Fan-Out Packaging Processes Comparison 2020

In-depth technical and cost overview of key Fan-Out processes technologies form Infineon, nepes, TSMC, SEMCO and

SP20479 - PACKAGING report by Stéphane ELISABETH
January 2020 – Sample
Table of Contents

Overview / Introduction 4
- Executive Summary
- Reverse Costing Methodology

Fan-Out Technologies 8
- eWLB, inFO, RCP, ePLP, M-series

Device Teardown 22
- Radar, Smartphones & Wearables
- Smartphone Evolution

Market Analysis 35
- Patent Application
- Fan-out Evolution and Drivers
- Fan-out Activity Market Forecast

Physical Analysis 41
- Summary of the Physical Analysis 42
- Automotive market: Infineon® eWLB vs. nepes/NXP® RCP for Thermal Dissipation
 - Infineon RRN7745P vs. NXP MR2001 45
 - Package Analysis
 - Package View & Dimensions
 - Package Cross-Section
 - Package Process Analysis
- Wearable market: TSMC® inFO vs. SEMCO® ePLP for High I/O density
 - Apple A12 vs. Samsung Exynos 9110 53
- Consumer market: Amkor® eWLB vs. ASE/Deca® M-Series for Side Wall Protection
 - Qualcomm WCD9335 Vs. Qualcomm PM8150 61
- Consumer & Wearable market: nepes/NXP® RCP vs. STATS ChipPAC® eWLB for SiP
 - NXP SCM-iMX6 Vs. Cypress CY8C68237FM-BLE 69

Manufacturing Process 75
- Global Overview: Thermal Dissipation, High I/O, Side Wall Protection, SiP
- Fan-Out Packaging Process & Fabrication Unit

Cost Analysis 85
- Summary of the cost analysis 86
- Yields Explanation & Hypotheses 89
- Front-End Cost Analysis 90
- MMC packaging for thermal dissipation Cost Analysis 92
 - RCP and eWLB Packaging Cost
 - Packaging Cost per Process Step
 - RCP vs. eWLB Component Cost
- AP packaging for High I/O Cost Analysis 98
- Audio Codec packaging for Side Wall Protection Cost Analysis 104
- Packaging for SiP Cost Analysis 110

Cost Comparison Analysis 116
- Summary of physical and cost analysis
- Board Level Reliability vs. Cost Estimation

Feedbacks 120

SystemPlus Consulting services 122
Executive Summary

• Back in 2015, only Outsourced Semiconductor Assembly and Test (OSAT) players were involved in Fan-Out (FO) packaging. In 2016, TSMC led the entry of foundries into this market with its integrated FO (inFO) packaging technology. Next, Integrated Device Manufacturers (IDMs) like Samsung joined the race with new in-house technology at the panel level. The result is that in 2019 OSATs have only a third of the market. Even with this reduced share, they are still developing and enhancing their portfolio in this segment. Recently ASE, in partnership with Deca Technologies, has entered the core market with its M-Series technology. Next, nepes bought the technology from Deca. As the market is continuously moving, System Plus Consulting offers an overview of the technologies on the market, providing the original equipment manufacturers’ (OEMs’) technical and cost choices of fan-out packaging.

• This report provides insights on technology data for FO packaging for different application segments. It includes a comparative study of eight components from power management integrated circuits (PMICs) to processors to radar Monolithic Microwave Integrated Circuits (MMICs) using Fan-Out technology from different suppliers.

• Physical data of several components has been compared in term of process flow, cost and integration to provide a largepanel of OEM technical and economic choices from the market such as:
 • embedded Wafer Level Ball (eWLB) grid array from Infineon, Amkor and STATSChipPAC
 • Redistributed Chip Package (RCP) from nepes
 • M-Series from ASE/Deca Technologies
 • Integrated Fan-Out (inFO) from TSMC
 • Enhanced Panel Level Packaging (ePLP) from SEMCO

• The report includes a description of each process flow for the five major fan-out technologies on the market. It also contains a complete cost analysis of the packaging and tries to explain OEM choices.
Denso DNMWR009 – 77 GHz Radar

- The radar features two receivers, one transmitter and one power amplifier MMIC.
- These four components are all packaged using eWLB technology.
Components with Fan-Out from 2011 to 2019

- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019

Device Teardown
- Denso DNMWR009
- Continental ARS4-A
- Apple Watch Series 4
- Samsung Galaxy Watch
- Samsung Galaxy S10 5G
- Samsung Galaxy S7 Edge
- FitBit Charge 3
- Smartphone Evolution

Market Analysis

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Feedbacks

Related Reports

About System Plus
Fan-Out Packaging Technology – Smartphones Evolution – 2019

Overview / Introduction
Company Profile & Supply Chain

Device Teardown
- Denso DNMWR009
- Continental ARS4-A
- Apple Watch Series 4
- Samsung Galaxy Watch
- Samsung Galaxy S10 5G
- Samsung Galaxy S7 Edge
- FitBit Charge 3

Market Analysis
Physical Analysis
Manufacturing Process Flow
Cost Analysis
Cost Comparison
Feedbacks
Related Reports
About System Plus

Summary of the Physical Analysis

Thermal Dissipation

- Infineon RXN77XX:
 - Process:
 - Features:
 - Substrate:

- NXP MR2001XXX:

High I/O

- Apple A12:

Side Wall Protection

- Qualcomm WCD9335:

- Qualcomm PM8150:

- Samsung Exynos 9110:

- Cypress CYSTM200-PM-BLE:

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Feedbacks

Related Reports

About System Plus
Package View & Dimensions

- Package:
- Dimensions:
- Pitch:
Package Overview

- Min. L/S: XX / XX µm
- Min. Line Pitch: XX µm
- Min. Line to Pad: XX µm
- Pad Dimensions: Ø XX µm (Outer), Ø XX µm (Inner)
- BGA Pad Dimensions: Ø XX µm (Outer)

Package Bottom View
©2020 by System Plus Consulting
Process Structure

- Wafer reconstitution and wafer molding
- Redistribution layer
- Ball drop, reflow and singulation

- Wafer reconstitution and wafer molding
- Redistribution layer
- Ball drop, reflow and singulation
 - Ball dropping and reflow
Amkor’s eWLB vs. ASE’s M-series Packaging Process

- Amkor’s eWLB packaging
- ASE’s M-Series packaging

- Package Process:
 - Package Type:
 - Carrier:
 - Process type:

- Test:
 - Test type:
The cost for the packaging ranges from [] to [] according to yield variations.

The largest portion of the manufacturing cost is due to the [].

By adding a gross margin of 15% for the OSAT, the packaging price per module ranges from []
inFO vs. ePLP Packaging Cost per process steps (1/2)

<table>
<thead>
<tr>
<th>Process Operation</th>
<th>TOTAL COST (USD/Unit)</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDL #1: Polymerization & Lithography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDL #2: Cure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDL #3: Cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDL #4: Backplating Copper (Cu)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost Analysis
- Cost Analysis Summary
- Yields Explanation & Hypotheses
- Front-End Cost
- Thermal Dissipation Packaging Cost
- High I/O Packaging Cost
- Side Wall Protection Packaging Cost
- SiP Packaging Cost

Cost Comparison

Feedbacks

Related Reports

About System Plus

©2020 by System Plus Consulting | SP201479 – Fan-Out Packaging Processes Comparison 2020
Cost Analysis
- Cost Analysis Summary
- Yields Explanation & Hypotheses
- Front-End Cost
- Thermal Dissipation Packaging Cost
- High I/O Packaging Cost
- Side Wall Protection Packaging Cost
- SiP Packaging Cost

Cost Comparison

Feedbacks

Related Reports

About System Plus
Component Cost

### Low Yield	Medium Yield	High Yield
SIP using RCP
Dies Cost per Reconstruct Wafer
RCP Package Manufacturing Price
Total Wafer Cost

Nb of potential dies per wafer

SIP Die Cost

### Low Yield	Medium Yield	High Yield
SIP using eWLB
Dies Cost per Reconstruct Wafer
eWLB Package Manufacturing Price
Total Wafer Cost

Nb of potential dies per wafer

SIP Die Cost
Summary of Cost Analysis

<table>
<thead>
<tr>
<th>Carrier Type</th>
<th>Carrier Size</th>
<th>Package Price</th>
<th>Costly Step</th>
<th># of patterning</th>
<th>Packaging price per component</th>
<th>Price per Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Dissipation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side Wall Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System-in-Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

ADVANCED PACKAGING
- ASE/Deca M-Series Fan-Out Process
- Advanced packaging technology in the Apple Watch Series 4’s System-in-Package
- Samsung Exynos 9110 with ePLP: First Generation of Samsung’s Fan-Out Panel Level Packaging (FO-PLP)

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

ADVANCED PACKAGING
- Fan-Out Packaging: Technologies and Market Trends 2019
- Equipment and Materials for Fan-Out Packaging 2019
- Status of the Advanced Packaging Industry 2019
Business Models Fields of Expertise

- Custom Analyses
 (>130 analyses per year)
- Reports
 (>60 reports per year)
- Costing Tools
- Trainings

Overview / Introduction
Company Profile & Supply Chain
Device Teardown
Market Analysis
Physical Analysis
Manufacturing Process Flow
Cost Analysis
Cost Comparison
Feedbacks
Related Reports
About System Plus
 - Company services
 - Contact