Hitachi Double-Side Cooling Power Module from Audi e-tron’s Inverter

Hitachi’s power module and its innovative assembling technology of integrated double-side cooling structure.

SP20516 – POWER report by Amine ALLOUCHE
Laboratory Analysis by Véronique LE TROADEC
January 2020 – SAMPLE
SUMMARY

Overview / Introduction 4
- Executive Summary
- Market
- Reverse Costing Methodology
- Glossary

Company Profile 9
- Hitachi Company Profile
- Hitachi Inverter Technology
- Supply Chain

Physical Analysis 14
- Synthesis of the Physical Analysis
- Package Analysis
 - Package Opening
 - Package Cross-section
- Si IGBT Die
 - IGBT Die View & Dimensions
 - IGBT Die Process
 - IGBT Die Cross-section
- Si Diode Die
 - Diode Die View & Dimensions
 - Diode Die Process
 - Diode Die Cross-section

Manufacturing Process 76
- Si IGBT Fabrication Unit
- Si IGBT Process Flow
- Si Diode Fabrication Unit
- Si Diode Process Flow
- Final Test & Packaging Fabrication unit
- Packaging Process Flow

Cost Analysis 91
- Synthesis of the Cost Analysis
- Yields Explanation & Hypotheses
- Si IGBT
 - IGBT Front-End Cost
 - IGBT Wafer Cost per Process Step
 - IGBT Die Probe Test & Dicing
 - IGBT Die Cost
- Si Diode
 - Diode Front-End Cost
 - Diode Wafer Cost per Process Step
 - Diode Die Probe Test & Dicing
 - Diode Die Cost
- Power Card Cost
 - Power Card BOM Cost
 - Power Card Assembly Cost
- Module Cost
 - Module BOM Cost
 - Packaging Assembly Cost
 - Final Module Cost

Selling Price Analysis 116
- Definition of prices
- Estimation of selling price

Comparison 119
- Hitachi vs Toyota vs Infineon DSC Power Modules

Feedbacks 121

Company Services 123
Executive Summary

The future of mobility will be electric. The new environmental regulations to reduce average CO2 emissions and automotive trends play in favor of stronger vehicle electrification and faster deployment of Electric Vehicles/ Hybrid Electric Vehicles (EV/HEVs). Yole Développement expects that EV/HEV market in number of vehicles will reach 24 Million units by 2024.

Vehicles with high electrification can usually benefit from more incentive mechanisms giving an advantage also to the car owner. Increasing battery energy capacity enables longer driving range of electric cars and powerful electric motors enable strong acceleration and high driving pleasure.

High electric power and needs for inverter downsizing bring challenges on the power module level.

Innovations at this level concern power module aspect (power card-like power module), baseplate structure (pin fin), the cooling technology (double-side cooling).

Hitachi combines all these key innovations in its new integrated 3rd generation double-side cooling power module.

In this 3rd generation double-sided cooling design, Hitachi implements a built-in latest-generation insulated-gate bipolar transistors (IGBTs) and diodes.

This report presents a deep analysis of the Hitachi power module. Supported by a full teardown of the module’s components and housing, this report reveals Hitachi’s innovative assets to assemble its 3rd generation double-sided cooling package as well as the designs of its IGBT and diode.

This report includes an estimated manufacturing cost of all the module’s components and its selling price analysis. It proposes a comparison between double sided cooling automotive power modules from Hitachi, Toyota, and Infineon.

These comparisons highlight differences in the packaging design, dies, and costs.
Synthesis of the Physical Analysis

Package: Double-sided direct cooling (Hitachi Gen 3)
- Dimensions:
 - Die Thickness:
 - Electrical Connection:

Dimensions:

Die Thickness:

Electrical Connection:
Package X-Rays – Terminals Identification

- from X-Rays as shown in the image.
- For instance,
Die Cross-Section – Gate Contact

Layers thickness:
- Xxx layer: xx µm
- Xxx layer: xx µm
- Gate poly contact width: xx µm
- Xxx : xx µm
Die Cross-Section – EDX Material Analysis
Die Cross-Section – Ring

- Guard Ring: \(\text{[value in \(\mu m \)]} \)
Module Process Flow

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow
 - Si IGBT Fab Unit
 - Si IGBT Process Flow
 - Si Diode Fab Unit
 - Si Diode Process Flow
 - Packaging Fab Unit
 - Packaging Process Flow

Cost Analysis

Selling Price Analysis

Comparison

Feedbacks

Related Reports

About System Plus

©2020 by System Plus Consulting | SP20516 – Hitachi EV Power Module
IGBT Wafer Cost Per Process Steps

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Cost [USD/Wafer]</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si IGBT Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si Diode Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Card Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diode Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield Cost</th>
<th>Medium Yield Cost</th>
<th>High Yield Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw wafer Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Front-End cost ranges from according to yield variations.

The main part of the wafer cost is due to the
Power Card – Assembly Cost

Power Card Manufacturing Cost Breakdown (Medium Yield)
Module – BoM & Assembly Cost

<table>
<thead>
<tr>
<th>Module BOM</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Manufacturing</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package Assembly Cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimated Manufacturer Price

<table>
<thead>
<tr>
<th>Module cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer Gross Profit</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
</tbody>
</table>

Cost & Price According to Yield Variation

The module manufacturing cost ranges from according to yield variations.

Considering a gross margin of for the module selling price is estimated to range from according to yield variations.
Hitachi vs Toyota vs Infineon Power Cards

<table>
<thead>
<tr>
<th>Power Card parameters</th>
<th>Hitachi in Audi e-tron</th>
<th>Toyota Prius DSC</th>
<th>Infineon HybridPACK FF400R07A01E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGBT Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutation cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Card Cost ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per cell ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One Commutation Cell (Half of Power Card in all cases): Top and Cross-Section – Optical Views
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

POWER SEMICONDUCTORS & COMPOUND
- Mitsubishi J1-Series 650V High-Power Modules for Automotive
- Infineon FF400R07A01E3 Double Side Cooled IGBT Module
- Toyota Prius Power Modules
- Infineon CoolIt²Die™ Power Module
- Automotive Power Module Packaging Comparison 2018

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

POWER ELECTRONICS & COMPOUND SEMI
- Power Electronics for Electric & Hybrid Electric Vehicles 2020
- Status of the Power Module Packaging Industry 2019