3D NAND Memory Comparison 2019

Comparison of Leading Edge 3D NAND Memories

TOSHIBA-SANDISK / SAMSUNG/SK HYNIX/MICRON-INTEL

SP19483 - Memory report by Belinda Dube

December 2019 – Sample
Table of Contents

<table>
<thead>
<tr>
<th>Overview / Introduction</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td></td>
</tr>
<tr>
<td>Reverse Costing Methodology</td>
<td></td>
</tr>
<tr>
<td>Company Profile</td>
<td>10</td>
</tr>
<tr>
<td>Toshiba/SanDisk</td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
</tr>
<tr>
<td>SK Hynix</td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
</tr>
<tr>
<td>SK Hynix</td>
<td></td>
</tr>
<tr>
<td>Toshiba/SanDisk</td>
<td></td>
</tr>
<tr>
<td>SK Hynix</td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
</tr>
<tr>
<td>SK Hynix</td>
<td></td>
</tr>
<tr>
<td>Technology & Market</td>
<td>15</td>
</tr>
<tr>
<td>NAND Roadmap</td>
<td></td>
</tr>
<tr>
<td>NAND Revenue</td>
<td></td>
</tr>
<tr>
<td>Physical Analysis</td>
<td>21</td>
</tr>
<tr>
<td>Toshiba/SanDisk</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Die Design</td>
<td></td>
</tr>
<tr>
<td>Cross-Section</td>
<td></td>
</tr>
<tr>
<td>Patents</td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Die Design</td>
<td></td>
</tr>
<tr>
<td>Cross-Section</td>
<td></td>
</tr>
<tr>
<td>Patents</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Process Flow</td>
<td>146</td>
</tr>
<tr>
<td>Global Overview</td>
<td></td>
</tr>
<tr>
<td>Wafer Fabrication Unit</td>
<td></td>
</tr>
<tr>
<td>Front-End Process</td>
<td></td>
</tr>
<tr>
<td>Cost Analysis</td>
<td>179</td>
</tr>
<tr>
<td>Synthesis of the cost analysis</td>
<td></td>
</tr>
<tr>
<td>Yields Explanation & Hypotheses</td>
<td></td>
</tr>
<tr>
<td>NAND wafer and die cost</td>
<td></td>
</tr>
<tr>
<td>Front-End Cost</td>
<td></td>
</tr>
<tr>
<td>Component Cost</td>
<td></td>
</tr>
<tr>
<td>Cost Analysis Comparison</td>
<td>222</td>
</tr>
<tr>
<td>Estimated Price and Gross Margin Analysis</td>
<td></td>
</tr>
<tr>
<td>Company services</td>
<td></td>
</tr>
</tbody>
</table>
Executive Summary

NAND Flash memory manufacturers continue to increase word lines in order to meet the customer demands of elevated memory capacity per die and faster read and write frequencies. By increasing the worldlines manufacturers face technical challenges that could induce defects in the NAND memories. Some manufacturers have introduced a new manufacturing process to overcome the limitations of stacking.

We present detailed technological and economical comparison of latest generation of 3D NAND flash memory available on the market today from four different manufacturers. These are the 96-layer designs from Toshiba/SanDisk, and Micron, 92- layers from Samsung and the 72- layer 3D NAND by SK Hynix. We base our analysis on full teardowns of the packages and the 3D NAND dies to unveil the technology choices used by the manufacturers.

We also identify the different participants in the supply chain. These two activities allow us to simulate the cost of the memory wafers and dies.

The report contains a detailed study of the latest NAND dies. The analysis also features a detailed study of die cross section and processes. The report details the physical analysis, highlighting the cell design and memory storage type. It matches the process description with the applicable patent. The report also includes the manufacturing cost analysis and estimation of the manufacturers Gross Margin.

Finally, it features an exhaustive comparison between the studied samples, highlighting the similarities and differences and their impact on cost.
Executive Summary

<table>
<thead>
<tr>
<th>Memory name & Generation</th>
<th>Number of layers</th>
<th>Technology node</th>
<th>Package dimension</th>
<th>Number of dies in package</th>
<th>Die Capacity & dimension</th>
<th>Flash Memory Area on die</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiCS 4 Gen 4</td>
<td>96 layer</td>
<td>TLC</td>
<td></td>
<td></td>
<td>32 GB</td>
<td></td>
</tr>
<tr>
<td>V-NAND Gen 5</td>
<td>92 layer</td>
<td>TLC</td>
<td></td>
<td></td>
<td>32 GB</td>
<td></td>
</tr>
<tr>
<td>pBiCS Gen 4</td>
<td>72 layer</td>
<td>TLC</td>
<td></td>
<td></td>
<td>64 GB</td>
<td></td>
</tr>
<tr>
<td>CUA Gen 5</td>
<td>96 layer</td>
<td>TLC</td>
<td></td>
<td></td>
<td>64 GB</td>
<td></td>
</tr>
</tbody>
</table>
Comparison Summary

Toshiba/SanDisk
- **Memoria** 32 GB

Samsung
- **Memoria** 32 GB

SK Hynix
- **Memoria** 64 GB

Micron/Intel
- **Memoria** 64 GB

<table>
<thead>
<tr>
<th></th>
<th>Toshiba/SanDisk</th>
<th>Samsung</th>
<th>SK Hynix</th>
<th>Micron/Intel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Active Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Die Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGDPW/300mm wafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential GB/wafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology node</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of layers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistor gate length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per Gb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Toshiba Memory- Package Cross Section

Adhesive between two memories: 36µm
The package contains: 2 substrates.
The BGA package contains: 18 dies

16 Memory dies +2 Dummy dies
The Dummy dies gives mechanical stability between the 4 dies.

- Capacity in 1 package: 512GB
- Capacity per Die: 32GB

Package Cross Section
©2019 by System Plus Consulting
The cross section reveals Toshiba's new process of aligning the word lines.
A total of 96 lines is used to manufacture the 3D NAND Die. 96-word lines are active.
Toshiba Memory - Effective unit Area

Total NAND Cell area : \(\text{mm}^2 \)

NAND string area = \(\text{mm}^2 \)

0.85 = Shifted matrix

Total area of Unit NAND String = \(\text{mm}^2 \) strings per die.

96 layers and TLC technology = 256Gbit per die.

The memory density/die = \(\text{Gb/mm}^2 \)

Memory density in active area = \(\text{Gb/mm}^2 \)
Patent-Contact Formation

Tungsten and Copper material is used for creating drain contacts.

Applicable patents: US Application Number US 9,362,298 B2
Charge trap layer is sandwiched between semiconductor and conductive layer W

WANOS

- **W** is a high k dielectric material that improves and reduces saturation.

- Word line made of **W** have improved gate

Manufacturing Process Flow

Cost Analysis

Cost Analysis Comparison

Selling Price Analysis

Related Reports

About System Plus
Staircase etching:
Pattening of the stairs is performed **6 times**.

This technique uses 1 pattern to etch out **staircase steps**.

- Patterning is done and repeated 4 times (4×8). This allows **Word Line layers** to be exposed.
- Each staircase contains 4 layers of silicon nitride and layers of silicon oxide.
- Another pattern is implemented to expose different word lines on different sides.
- A last pattern/etch is used to etch in the y direction to double the number of layers to pass over.
Overview / Introduction

Company Profile

Technology and market

Physical Analysis
- Physical Methodology
 - Toshiba/SanDisk
 - Synthesis
 - Package
 - Physical Analysis
 - Patent
 - Outline
 - Samsung
 - Synthesis
 - Package
 - Physical Analysis
 - Patent
 - Outline
 - SK Hynix
 - Synthesis
 - Package
 - Physical Analysis
 - Patent
 - Outline
 - Intel/Micron
 - Synthesis
 - Package
 - Physical Analysis
 - Patent
 - Outline
- Comparison

Manufacturing Process Flow
Cost Analysis
Cost Analysis Comparison
Selling Price Analysis
Related Reports
About System Plus

SK Hynix Memory - Wire Bonding

Inside the Package: 8 memory dies.

Total Number of interconnect wires: 8 dies
Inteconnect wires per die: 2

Wire Diameter: ~ 2 μm

Wire Material:

PACKAGE OPENING TOP VIEW

©2019 by System Plus Consulting
SK Hynix Memory - Effective unit Area

- Each row of channel holes is shifted to optimize the channel hole density.

![Channel hole diagram](image)

Total NAND Cell area: \(\text{mm}^2 \)

Area of 4 strings =

Area of one string =

(This calculated area takes account of the slit hole area).

72 layers and TLC technology give \(\text{Gb} / \text{die} \).

Memory density/die = \(\text{Gb} / \text{die} \).

The memory density in active area = \(\text{Gb/mm}^2 \).
Micron Memory - Cross Section

- Micron’s NAND process is characterized by CMOS under Array process.
- The control word line controls movement of the memory data.
- Micron builds the NAND on the wafer and manufactures the NAND on the CMOS transistors.

Manufacturing Process Flow
Cost Analysis
Cost Analysis Comparison
Selling Price Analysis
Related Reports
About System Plus
Micron Memory - Effective unit Area

Total NAND Cell area: 348 mm²

NAND string area = 348 mm²
(This calculated area takes account of the slit hole area).

- Total number of NAND strings =
- Total number of bits in die = 256Gb/die

96 layers and TLC give 64GB per die:
- Memory density in a die = 64 GB/mm²
- Memory density in a die = 64 GB/mm²
Die comparison

<table>
<thead>
<tr>
<th></th>
<th>Toshiba/Kioxia</th>
<th>Samsung</th>
<th>SK Hynix</th>
<th>Micron/Intel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Active Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Die</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory density/die</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory density/active area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDPW/300mm wafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential GB/wafer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Using the [3D] technology that gains more memory space by building the NAND Cells on top of the CMOS. This technique increases the NAND cell density per die.
- The single-layer NAND in the market is still competitive compared to the new generation from other manufacturers.

PDPW = potential Dies per wafer
Physical analysis summary - staircase

<table>
<thead>
<tr>
<th></th>
<th>Toshiba/SanDisk</th>
<th>Samsung</th>
<th>SK Hynix</th>
<th>Micron/Intel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staircase pattern</td>
<td>stairsteps/pattern</td>
<td>stairsteps/pattern</td>
<td>stairsteps/pattern</td>
<td>stairsteps/pattern</td>
</tr>
<tr>
<td>Word lines/stairstep</td>
<td>word lines</td>
<td>word lines</td>
<td>Word lines</td>
<td>Word lines</td>
</tr>
<tr>
<td>Lithography count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2019 by System Plus Consulting
Samsung Memory Process - Slit

- Patterning and High Aspect Ratio Etching is performed,
 - CVD SiO2
 - CMP

- Deposit
 - Deposit seed layer
 - TiN
 - CVD filling (word lines)

- Lithography
- Etch
- PECVD
- PVD seed layer
- CVD
- CVD filling
- CMP
The CMOS transistor and the metal layers front-end cost is

The largest portion of the manufacturing cost is due to the
Memory 3D 96-L Structure Front-End Cost

<table>
<thead>
<tr>
<th>3D 96L memory process</th>
<th>Q3 2019 Cost</th>
<th>Breakdown</th>
<th>Q4 2019 Cost</th>
<th>Breakdown</th>
<th>Q1 2020 Cost</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory (96-Layers)</td>
<td>Front-End Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Chain/Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wafer & Die Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back-End Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **front-end cost** for the Memory is constant at [Cost]_.

The largest portion of the manufacturing cost is due to the high cost at [Cost]_.

Total Memory Front End Price includes the fabrication cost of CMOS transistor, the metal layers, the 96L memory and yield loss cost.

Total Memory Front End Cost ranges from [Cost]_ depending on the different yield loss.
Memory Wafer & Die Cost

<table>
<thead>
<tr>
<th>Cost Analysis</th>
<th>Toshiba/SanDisk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply Chain/Yield</td>
</tr>
<tr>
<td></td>
<td>Wafer & Die Cost</td>
</tr>
<tr>
<td></td>
<td>Package Cost</td>
</tr>
<tr>
<td></td>
<td>Back-End Cost</td>
</tr>
<tr>
<td></td>
<td>Component Cost</td>
</tr>
<tr>
<td>Samsung</td>
<td>Supply Chain/Yield</td>
</tr>
<tr>
<td></td>
<td>Wafer & Die Cost</td>
</tr>
<tr>
<td></td>
<td>Package Cost</td>
</tr>
<tr>
<td></td>
<td>Back-End Cost</td>
</tr>
<tr>
<td></td>
<td>Component Cost</td>
</tr>
<tr>
<td>SK Hynix</td>
<td>Supply Chain/Yield</td>
</tr>
<tr>
<td></td>
<td>Wafer & Die Cost</td>
</tr>
<tr>
<td></td>
<td>Package Cost</td>
</tr>
<tr>
<td></td>
<td>Back-End Cost</td>
</tr>
<tr>
<td></td>
<td>Component Cost</td>
</tr>
<tr>
<td>Micron/Intel</td>
<td>Supply Chain/Yield</td>
</tr>
<tr>
<td></td>
<td>Wafer & Die Cost</td>
</tr>
<tr>
<td></td>
<td>Package Cost</td>
</tr>
<tr>
<td></td>
<td>Back-End Cost</td>
</tr>
<tr>
<td></td>
<td>Component Cost</td>
</tr>
<tr>
<td>Comparison</td>
<td>Synthesis</td>
</tr>
</tbody>
</table>

Cost Analysis Comparison

<table>
<thead>
<tr>
<th>Selling Price Analysis</th>
<th>Related Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About System Plus</td>
</tr>
</tbody>
</table>

Memory Wafer Cost

<table>
<thead>
<tr>
<th>Q3 2019</th>
<th>Q4 2019</th>
<th>Q1 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
</tbody>
</table>

Front-End Cost

- BE 0: Probe Test Cost
- BE 0: Backgrinding + Dicing Cost

Memory Wafer Cost

- Nb of potential dies per wafer
- Nb of good dies per wafer

Front-End Cost

- BE 0: Probe Test & Dicing Cost
- BE 0: Yield losses

Memory Die Cost

By adding the probe test cost and the dicing, the **wafer cost** ranges from **according to yield variations.**

The number of **good dies per wafer** is estimated to ranges from **according to yield variations, which results in a die cost ranging from**
Wafer Cost Comparison - Medium Yield

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>NAND Wafer Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba</td>
<td>$1.846.75</td>
</tr>
<tr>
<td>Samsung</td>
<td>$1.837.49</td>
</tr>
<tr>
<td>SK Hynix</td>
<td>$1.849.29</td>
</tr>
<tr>
<td>Micron</td>
<td>$1.849.29</td>
</tr>
</tbody>
</table>

- Toshiba: A higher cost for the wafer due to the increased metal layers and the new fab unit cost. The equipment is new and therefore contribute to the high wafer cost.
- Samsung: Has a high expensive NAND Wafer fabrication cost; this is due to the number of patterning/lithography carried out during the manufacturing process. The extensive lithography costs contribute to the final cost of a wafer.
- SK Hynix: Has the same cost range due to the increased number of worldlines deposited.

©2019 System Plus Consulting | SP19483 - 3D NAND Memory Comparison 2019 | Sample
Overview / Introduction

Company Profile

Technology and market

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Cost Analysis Comparison
- Wafer Cost
- Die Cost
- CMOS
- NAND Memory Cells
- Top metallization
- NAND Cost/Gb

Selling Price Analysis

Related Reports

About System Plus

Die Cost Comparison - Medium Yield

![Die Cost Comparison Diagram](image)

Die has the lowest cost because of the small die size. More dies are produced per wafer.

Micron has the least expensive die to capacity. Building the Word lines above the CMOS/CMOS under technique from Micron helps minimize the area of the dies and increase the density significantly. Microns die has the least expensive.

Increased NAND capacity is produced by micron per wafer.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Die Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba</td>
<td></td>
</tr>
<tr>
<td>Samsung</td>
<td></td>
</tr>
<tr>
<td>SK Hynix</td>
<td></td>
</tr>
<tr>
<td>Micron</td>
<td></td>
</tr>
</tbody>
</table>
NAND Memory Cells Cost Comparison

- NAND Memory cell cost is cheaper than the other manufacturers, the simplified

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>3D NAND Memory Cells Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba</td>
<td>5000</td>
</tr>
<tr>
<td>Samsung</td>
<td>6000</td>
</tr>
<tr>
<td>SK Hynix</td>
<td>7000</td>
</tr>
<tr>
<td>Micron</td>
<td>8000</td>
</tr>
</tbody>
</table>

3D Memory Layer Cost
Overview / Introduction
Cost Analysis
Cost Analysis Comparison
Selling Price Analysis
Related Reports
About System Plus

Cost per Gb Cost Comparison

<table>
<thead>
<tr>
<th>Die size GB</th>
<th>96 layers</th>
<th>92 layers</th>
<th>72 layers</th>
<th>96 layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba/SanDisk</td>
<td>512GB</td>
<td>256GB</td>
<td>512GB</td>
<td>256GB</td>
</tr>
<tr>
<td>Samsung</td>
<td>256GB</td>
<td>256GB</td>
<td>512GB</td>
<td>512GB</td>
</tr>
<tr>
<td>SK Hynix</td>
<td>256GB</td>
<td>256GB</td>
<td>512GB</td>
<td>512GB</td>
</tr>
<tr>
<td>Micron</td>
<td>256GB</td>
<td>256GB</td>
<td>512GB</td>
<td>512GB</td>
</tr>
</tbody>
</table>

- Toshiba/SanDisk has the cheapest die and cheaper cost per Gb, this is due to the technic that is used and therefore enabling more production of dies per wafer 12-inch wafer.
- The Toshiba/SanDisk process is easier to perform compared to the Charge trap deposition.
- The Micron process of using polysilicon floating gate can be an advantage in the cost as this avoids etching out polysilicon to deposit tungsten word lines and this also reduces the etching steps.
- Micron's 96-layer process cost/Gb is still competitive compared to the 92- and 96-layer NAND memories.
Component Price - Micron

<table>
<thead>
<tr>
<th>Q3 2019</th>
<th>Q4 2019</th>
<th>Q1 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Component price of NAND Flash could also vary as the NAND Flash market is highly affected by seasonal demands, shipping supply chain and production yield.

By using ASP provided by Yole for 3D NAND TLC, we estimate that Intel could realize a gross margin in the range of % between 2019 and 2020, which results in a final component price ranging from $ in 2019 to $ in 2020.
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

MEMORY
- LPDDR4 Memory Comparison 2019
- Samsung 3D V-NAND 92 layers Memory
- Leading-edge 3D NAND Memories Comparison 2018

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

MEMORY
- DRAM & NAND Service – Memory Research
- Status of the Memory Industry 2019
Business Models Fields of Expertise

- Custom Analyses
 (>130 analyses per year)
- Reports
 (>60 reports per year)
- Costing Tools
- Trainings

Overview / Introduction
Company Profile
Technology and market
Physical Analysis
Manufacturing Process Flow
Cost Analysis
Cost Analysis Comparison
Selling Price Analysis
Related Reports
About System Plus
 - Company services
 - Contact
Contact

Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix, AZ
WESTERN US
T : +1 310 600 8267
laferriere@yole.fr

Chris YOUMAN
EASTERN US & CANADA
T : +1 919 607 9839
chris.youman@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 804 371 4887
onozawa@yole.fr

Mavis WANG
TAIWAN
T : +886-979 336 809
wang@yole.fr

www.systemplus.fr
ORDER FORM

Please process my order for 3D NAND Comparison 2019, Reverse Costing® – Structure, Process & Cost Report
Ref: SP19483

- Full Structure, Process & Cost Report : EUR 6,490*
- Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ...
Job Title: ...
Company: ...
Address: ...
City: ... State:
Postcode/Zip: ...
Country: ...
VAT ID Number for EU members: ..
Tel: ...
Email: ...
Date: ...
Signature: ...

BILLING CONTACT

First Name : ...
Last Name: ..
Email: ...
Phone: ...

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
|__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__| __|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP
- In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
- In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.systemplus.fr. The present document is valid 6 months after its publishing date: December 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports. Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
- Power: GaN - IGBT - MOSFET - Si Diode - SiC
- Imaging: Camera - Spectrometer
- LED and Laser: UV LED – VCSEL - White/blue LED
- Packaging: 3D Packaging - Embedded - SIP - WLP
- Integrated Circuits: IPD – Memories – PMIC – SoC
- RF: FEM - Duplexer
- Systems: Automotive - Consumer - Energy - Telecom
1. INTRODUCTION
The present terms and conditions apply to the offers, sales and deliveries of services managed by System Plus Consulting except in the case of a particular written agreement.
Buyer must note that placing an order means an agreement without any restriction with these terms and conditions.

2. PRICES
Prices of the purchased services are those which are in force on the date the order is placed. Prices are in Euros and worked out without taxes. Consequently, the taxes and possible added costs agreed when the order is placed will be charged on these initial prices.
System Plus Consulting may change its prices whenever the company thinks it necessary. However, the company commits itself in invoicing at the prices in force on the date the order is placed.

3. REBATES and DISCOUNTS
The quoted prices already include the rebates and discounts that System Plus Consulting could have granted according to the number of orders placed by the Buyer, or other specific conditions. No discount is granted in case of early payment.

4. TERMS OF PAYMENT
System Plus Consulting delivered services are to be paid within 30 days end of month by bank transfer except in the case of a particular written agreement.
If the payment does not reach System Plus Consulting on the deadline, the Buyer has to pay System Plus Consulting a penalty for late payment the amount of which is three times the legal interest rate. The legal interest rate is the current one on the delivery date. This penalty is worked out on the unpaid invoice amount, starting from the invoice deadline. This penalty is sent without previous notice.
When payment terms are over 30 days end of month, the Buyer has to pay a deposit which amount is 10% of the total invoice amount when placing his order.

5. OWNERSHIP
System Plus Consulting remains sole owner of the delivered services until total payment of the invoice.

6. DELIVERIES
The delivery schedule on the purchase order is given for information only and cannot be strictly guaranteed. Consequently any reasonable delay in the delivery of services will not allow the buyer to claim for damages or to cancel the order.

7. ENTRUSTED GOODS SHIPMENT
The transport costs and risks are fully born by the Buyer. Should the customer wish to ensure the goods against lost or damage on the base of their real value, he must imperatively point it out to System Plus Consulting when the shipment takes place. Without any specific requirement, insurance terms for the return of goods will be the carrier current ones (reimbursement based on good weight instead of the real value).

8. FORCE MAJEURE
System Plus Consulting responsibility will not be involved in non execution or late delivery of one of its duties described in the current terms and conditions if these are the result of a force majeure case. Therefore, the force majeure includes all external event unpredictable and irresistible as defined by the article 1148 of the French Code Civil?

9. CONFIDENTIALITY
As a rule, all information handed by customers to System Plus Consulting are considered as strictly confidential.
A non-disclosure agreement can be signed on demand.

10. RESPONSIBILITY LIMITATION
The Buyer is responsible for the use and interpretations he makes of the reports delivered by System Plus Consulting. Consequently, System Plus Consulting responsibility can in no case be called into question for any direct or indirect damage, financial or otherwise, that may result from the use of the results of our analysis or results obtained using one of our costing tools.

11. APPLICABLE LAW
Any dispute that may arise about the interpretation or execution of the current terms and conditions shall be resolved applying the French law.
It the dispute cannot be settled out-of-court, the competent Court will be the Tribunal de Commerce de Nantes.