Intel 100G PSM4 QFSO28 Transceiver

Optical Fiber Transceiver for Datacenter based on Intel's Silicon Photonics

Photonic report by Sylvain HALLEREAU
March 2019 – version 1
Table of Contents

Overview / Introduction 4
 o Executive Summary
 o Reverse Costing Methodology

Company Profile 8
 o Intel
 o Intel 100G PSM4 Edition Teardown

Market Analysis 16
 o Ecosystem & Forecast

Physical Analysis 20
 o PSM4 Connector Teardown 23
 ✓ Module View
 ✓ Function Identification
 o Transmitter Block 29
 ✓ View & Dimensions and Cross-Section
 ✓ Fiber Optic Coupler, Prism and Rotator
 ✓ Light Way and Lens Module
 o MZI Modulator Driver Die 43
 ✓ Die Overview & Dimensions
 ✓ Die Process and Cross-Section
 o Silicon Photonic Die 57
 ✓ Die Overview & Dimensions
 ✓ InP Laser process and cross-section
 ✓ MZI process and cross-section
 ✓ Mirror process and cross-section
 ✓ Waveguide process and cross-section
 ✓ Die Process Characteristic
 o Receiver Block 97
 ✓ Fiber Optic Coupler
 ✓ Light Way
 o Germanium Photodiode die 104
 ✓ Die View & Dimensions
 ✓ Die Process and Cross-Section
 o TIA Die 116
 ✓ Die Overview & Dimensions
 ✓ Die Process and Cross-Section
 o MACOM MG37049G Die 129
 ✓ Die Overview & Dimensions
 ✓ Die Process and Cross-Section

Comparison Intel Luxtera Silicon Photonic Die 143

Manufacturing Process 148
 o MZI Driver Die Front-End Process & Fabrication Unit
 o Silicon Photonic Die Process Flow
 o Silicon Photonic Die Front-End Fabrication Unit
 o Receiver Fiber Optic coupler, Process Flow and cost
 o Germanium Photodiode Die Process Flow & Fabrication Unit
 o TIA Die Front-End Process & Fabrication Unit
 o MACOM M37049G Die Front-End Process & Fabrication Unit

Cost Analysis 165
 o Summary of the cost analysis
 o Yields Explanation & Hypotheses
 o Transmitter Block 170
 o Si Photonic Die
 o Wafer Cost
 o Step cost
 o Die Cost
 o MZI Driver Die
 o MACOM M37049G
 o Optical Elements
 o Assembly
 o Receiver Block 188
 o Ge Photodiode Die
 o TIA Die
 o MACOM M37049G
 o Optical Element
 o Assembly

Feedbacks 200

SystemPlus Consulting services
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Intel’s Silicon Photonic 100G PSM4 QFSP28 Transceiver.

- In only a few years, Intel succeeded being number 2 supplier for Si photonics based optical transceivers. Intel has succeeded because they put a lot of effort into the bottleneck: the laser chip integration with its InP chiplet bonding followed by post processing. Intel introduced a silicon photonics QSFP transceiver that supports 100G communications in 2016 and since then, the company has now ships a million units of the product per year into data centers. Intel's 400G products are expected to enter volume production in the second half of 2019. At ECOC 2018, Intel announced new 100G silicon photonics transceivers targeted at 5G wireless fronthaul applications. All these innovations have been allowed with the first generation, the Intel 100G series silicon photonics QSP transceivers featuring laser on chip.

- The transceivers came with two separated line with several dies. The transmitter integrated several InP laser and a CMOS die chiplets are bonded on a main silicon die in flip-chip configuration. On the main silicon die a Mach-Zehnder modulator is added in order to produce the signal. Other components are added to the system in order to focus or isolate the signals. The data are processed using a four channel 25G optical Clock and Data Recovery (CDR) component from MACOM. The receiver function is performed by 4 germanium photodiodes die and a TransImpedance Amplifier (TIA) circuit. The Ge photodiodes are manufactured on a dedicated SOI substrate. A specific fiber optical coupler with focusing lens is used to connect the photodiode die with the fiber optic.

- All of these described in this report shows the potential of Intel in term of packaging, and photonics. In a very small form factor, Intel managed to integrate four lasers, a photonic driver, optical modules, CDR functionality, high performance photodiodes, two advanced substrates and materials for optic. This report will show how implement the chiplet configuration along with a detailed description of the transmitter and receiver line.

- This report constitutes an exhaustive analysis of the main components of the Intel 100G PSM4 connector, including a full analysis of the Silicon Photonic die, the TIA circuit, the Mach-Zehnder Driver circuit, the MACOM circuit and the germanium photodiode along with a cost analysis and price estimate. The 2 fiber optic couplers, focusing lens the isolator are described and the price estimated. Moreover, a comparison with Luxtera silicon photonic circuit is performed.
The reverse costing analysis is conducted in 3 phases:

Teardown analysis
- Package is analyzed and measured
- The dies are extracted in order to get overall data: dimensions, main blocks, pad number and pin out, die marking
- Setup of the manufacturing process.

Costing analysis
- Setup of the manufacturing environment
- Cost simulation of the process steps

Selling price analysis
- Supply chain analysis
- Analysis of the selling price
Summary of the Physical Analysis – Transmitter Block

- The optical connector is disassembled to get dies and optical components data: dimensions, main characteristics, device markings.

- The components of the transmitter line are identified:
 - Pictures of selected area are made in order to understand the connections and the way of light
 - High Resolution Optical photographs to measure the lines dimensions.
 - Cross section of Silicon Photonic die to measure thicknesses.
 - Delaying of the die to observe waveguides, Mach-zehnder modulator, etc
 - Cross section of optical parts to measure thicknesses and EDX analyse of the materials.
 - Lens module
 - Prism
 - Isolator
 - Fiber optic coupler
 - Cross section of MZI Driver and CDR ICs to measure thicknesses.
 - Explanation of the transmitter line
Summary of the Physical Analysis – Receiver Block

- The optical connector is disassembled to get dies and optical components data: dimensions, main characteristics, device markings.

- The components of the receiver line are identified:
 - Pictures of selected area are made in order to understand the connections and the way of light
 - High Resolution Optical photographs to measure the lines dimensions.
 - Cross section of Germanium photodiode die to measure thicknesses.
 - Cross section of optical parts to measure thicknesses and EDX analyse of the materials.
 - Fiber optic coupler
 - Cross section of TIA and CDR ICs to measure thicknesses.
 - Explanation of the transmitter line
Intel 100G PSM4

Overview / Introduction
Company Profile & Supply Chain
Market Analysis

Physical Analysis
- 100G PSM4 Teardown
 - Transmitter Block
 - View, Dimensions, Cross-Section, Fiber Optic Coupler
 - MZI Modulator Driver Die
 - Die View & Cross-section
 - Silicon Photonic Die
 - InP Laser Cross-Section
 - MZI Modulator Cross-Sect
 - Mirror Cross-Section
 - Waveguide Cross-Section
 - Receiver Block
 - Fiber Optic Coupler
 - Ge Photodiode Die
 - View & Process
 - Die Cross-Section
 - TIA Die
 - Macom M37049G Die

Physical Comparison
Manufacturing Process Flow
Cost Analysis
Related Reports
About System Plus

Dimensions
- Height: 120 mm
- Width: 18.5 mm
- Thickness: 8.6 mm

Weight
- 69g

Intel 100G PSM4 Overview
©2019 by System Plus Consulting

Intel 100G PSM4 Front, Side and Back View
©2019 by System Plus Consulting
Intel 100G PSM4 Teardown

- The metal cover contains several pieces realizing the data to the light features.
- This is made with four main components:
 - The silicon photonic die
 - The modulator driver
 - The light guide
 - The fiber coupler
Intel 100G PSM4 – Transmitter Block
InP Laser Diode – Silicon Photonic Die

Physical Analysis
- 100G PSM4 Teardown
 - Transmitter Block
 - View, Dimensions, Cross-Section, Fiber Optic Coupler
 - MZI Modulator Driver Die
 - Die View & Cross-section
 - Silicon Photonic Die
 - InP Laser Cross-Section
 - MZI Modulator Cross-Sect
 - Mirror Cross-Section
 - Waveguide Cross-Section
 - Receiver Block
 - Fiber Optic Coupler
 - Ge Photodiode Die
 - View & Process
 - Die Cross-Section
 - TIA Die
 - Macom M37049G Die

Physical Comparison
Die Delayering – 4x Ge Photodiode Die

Physical Analysis
- 100G PSM4 Teardown
 - Transmitter Block
 - View, Dimensions, Cross-Section, Fiber Optic Coupler
 - MZI Modulator Driver Die
 - Die View & Cross-section
 - Silicon Photonic Die
 - InP Laser Cross-Section
 - MZI Modulator Cross-Sect
 - Mirror Cross-Section
 - Waveguide Cross-Section
 - Receiver Block
 - Fiber Optic Coupler
 - Ge Photodiode Die
 - View & Process
 - Die Cross-Section
 - TIA Die
 - Macom M37049G Die

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Related Reports

About System Plus
Silicon Photonic Die Wafer Process Flow Epitaxy

- SOI etching: Lithography 1
- SOI etching: Lithography 2
Handle Wafer Front-End Cost

<table>
<thead>
<tr>
<th>Handle Wafer for the Chiplet</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
</tbody>
</table>

Cost Analysis
- Cost Analysis Summary
- Yields Explanation & Hypotheses
- Transmitter Block
 - Si Photonic Die
 - Wafer Cost
 - Step cost
 - Die Cost
 - MZI Driver Die
 - MACOM M37049G
 - Optical Elements
 - Assembly
- Receiver Block
 - Ge Photodiode Die
 - TIA Die
 - MACOM M37049G
 - Optical Element
 - Assembly

Related Reports
- About System Plus
Transmitter Block Cost

Assembly Cost

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th></th>
<th>Medium Yield</th>
<th></th>
<th>High Yield</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
</tr>
</tbody>
</table>

- **Adhesive Deposition**
 - Photonic Die placement

- **Transmitter Block**
 - Si Photonic Die
 - Wafer Cost
 - Step cost
 - Die Cost
 - MZI Driver Die
 - MACOM M37049G
 - Optical Elements
 - Assembly

- **Receiver Block**
 - Ge Photodiode Die
 - TIA Die
 - MACOM M37049G
 - Optical Element
 - Assembly

Related Reports

- Cost Analysis Summary
- Yields Explanation & Hypotheses
- Transmitter Block
- Receiver Block

Cost Analysis

Company Profile & Supply Chain

Market Analysis

Physical Analysis

Physical Comparison

Manufacturing Process Flow
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

IMAGING
- Luxtera Silicon Photonic Die
- Mobile Camera Module Comparison 2019
- STMicroelectronics’ Near Infrared Camera Sensor in the Apple iPhone X
- Apple iPhone X – Infrared Dot Projector
- Orbbec’s Front 3D Depth Sensing System in the Oppo Find X

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

IMAGING
- InP Wafer and Epiwafer Market – Photonic and RF Applications
- Silicon Photonics 2018
Business Models Fields of Expertise

Custom Analyses
(>130 analyses per year)

Reports
(>60 reports per year)

Costing Tools

Trainings

Display
LED
IC & RF
MEMS & Sensor
PCB
Imaging
Packaging
System
Power

©2019 by System Plus Consulting | Intel Silicon Photonic 100G PSM4 Transceiver
ORDER FORM

Please process my order for “Intel Silicon Photonic 100G PSM4 QFSP28 Transceiver” Reverse Costing® – Structure, Process & Cost Report
Ref: SP19407

- Full Structure, Process & Cost Report : EUR 3,990*
- Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ..
Job Title: ……...
Company: …...
Address: ……...
City: ………………………………… State: ..
Postcode/Zip: ..
Country: ……...
VAT ID Number for EU members: ..
Tel: ………………...
Email: ...
Date: ..
Signature: ..

BILLING CONTACT

First Name : ...
Last Name: ……... Email: …..
Phone: ……..

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__| |__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

- In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
- In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.systemplus.fr. The present document is valid 6 months after its publishing date: March 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
- Power: GaN - IGBT - MOSFET - Si Diode - SiC
- Imaging: Camera - Spectrometer
- LED and Laser: UV LED – VCSEL - White/blue LED
- Packaging: 3D Packaging - Embdedded - SIP - WLP
- Integrated Circuits: IPD – Memories – PMIC - SoC
- RF: FEM - Duplexer
- Systems: Automotive - Consumer - Energy - Telecom
1. INTRODUCTION
The present terms and conditions apply to the offers, sales and deliveries of services managed by System Plus Consulting except in the case of a particular written agreement.
Buyer must note that placing an order means an agreement without any restriction with these terms and conditions.

2. PRICES
Prices of the purchased services are those which are in force on the date the order is placed. Prices are in Euros and worked out without taxes. Consequently, the taxes and possible added costs agreed when the order is placed will be charged on these initial prices.
System Plus Consulting may change its prices whenever the company thinks it necessary. However, the company commits itself in invoicing at the prices in force on the date the order is placed.

3. REBATES and DISCOUNTS
The quoted prices already include the rebates and discounts that System Plus Consulting could have granted according to the number of orders placed by the Buyer, or other specific conditions. No discount is granted in case of early payment.

4. TERMS OF PAYMENT
System Plus Consulting delivered services are to be paid within 30 days end of month by bank transfer except in the case of a particular written agreement.
If the payment does not reach System Plus Consulting on the deadline, the Buyer has to pay System Plus Consulting a penalty for late payment the amount of which is three times the legal interest rate. The legal interest rate is the current one on the delivery date. This penalty is worked out on the unpaid invoice amount, starting from the invoice deadline. This penalty is sent without previous notice.
When payment terms are over 30 days end of month, the Buyer has to pay a deposit which amount is 10% of the total invoice amount when placing his order.

5. OWNERSHIP
System Plus Consulting remains sole owner of the delivered services until total payment of the invoice.

6. DELIVERIES
The delivery schedule on the purchase order is given for information only and cannot be strictly guaranteed. Consequently any reasonable delay in the delivery of services will not allow the buyer to claim for damages or to cancel the order.

7. ENTRUSTED GOODS SHIPMENT
The transport costs and risks are fully born by the Buyer. Should the customer wish to ensure the goods against lost or damage on the base of their real value, he must imperatively point it out to System Plus Consulting when the shipment takes place. Without any specific requirement, insurance terms for the return of goods will be the carrier current ones (reimbursement based on good weight instead of the real value).

8. FORCE MAJEURE
System Plus Consulting responsibility will not be involved in non execution or late delivery of one of its duties described in the current terms and conditions if these are the result of a force majeure case. Therefore, the force majeure includes all external event unpredictable and irresistible as defined by the article 1148 of the French Code Civil?

9. CONFIDENTIALITY
As a rule, all information handed by customers to System Plus Consulting are considered as strictly confidential.
A non-disclosure agreement can be signed on demand.

10. RESPONSIBILITY LIMITATION
The Buyer is responsible for the use and interpretations he makes of the reports delivered by System Plus Consulting. Consequently, System Plus Consulting responsibility can in no case be called into question for any direct or indirect damage, financial or otherwise, that may result from the use of the results of our analysis or results obtained using one of our costing tools.

11. APPLICABLE LAW
Any dispute that may arise about the interpretation or execution of the current terms and conditions shall be resolved applying the French law.
It the dispute cannot be settled out-of-court, the competent Court will be the Tribunal de Commerce de Nantes.