Automotive Radar Overview 2018
Teardown and RF analysis of large panel of Radar
RF report by Stéphane ELISABETH
October 2018 – version 1
Table of Contents

Overview / Introduction 4
 o Executive Summary
 o Analyzed Radar Sensor
 o Glossary

Company Profile 11
 o Veoneer (Formerly Autoliv), Bosch, Continental, Aptiv (formerly Delphi),
 Denso, Autocruise/TRW, Valeo
 o Module History – 24 GHz and 77 GHz

Market Analysis 28
 o Autonomous Driving Car Roadmap: Radar
 o Radar Module Market Forecast

24 GHz NB Physical & Cost Comparison 33
 o Module Size & Complexity, Board Size & Complexity, RF Design, BOM
 Breakdown

77 GHz Physical & Cost Comparison 41
 o Module Size & Complexity, Board Size & Complexity, RF Design, BOM
 Breakdown

24 GHz NB vs. 77 GHz Physical Comparison 48
 o RF Design

From 24 GHz NB to 79 GHz Physical Comparison 51

24 GHz NB Physical Analysis 58
 o Summary of the Physical Analysis 59
 o Continental SRR2-A 61
 ✓ Module View & Dimensions
 ✓ Module Opening
 ✓ Mains ICs on Main Board
 ✓ RF Board View & Dimensions
 ✓ RF Board MMICs
 ✓ RF Board Overview & Main Block IDs

77 GHz Physical Analysis 159
 o Continental SRR3-B 81
 o Veoneer NB24BS 103
 o Autocruise AC100 125
 o Valeo MBHL2 140

Customer Feedbacks 394

Company services 396

©2018 by System Plus Consulting | Automotive Radar Overview 2018 2
Executive Summary

• This comparative review has been conducted to provide insights into the structures, technical choices, and designs of 15 automotive Radar sensor products from the leading suppliers. The suppliers include Veoneer (Formerly Autoliv), Bosch Sensortec, Continental, Aptiv (Formerly Delphi Technologies), Denso, ZF/Autocruise, and Valeo.

• We analyze and compare 6 devices that use the 24 GHz frequency band, featuring chipset supplied by STMicroelectronics, Infineon, Analog Devices or UMS and targeting sort ranges application like blind spot detection. We have also looked at 9 devices working in the 77 GHz frequency band more dedicated to multimode radar or long range radar sensing. On this other segments several companies like Infineon, NXP even TowerJazz shares the market. We look at their package dimensions and internal structures, Chipset technologies, antenna design and dimensions, and RF PCB cross-sections, to provide a comprehensive review of Radar Sensors.

• Radar Sensors’ packaging and chipset differ widely according to application. In more than 390 pages, this report includes multiple comparisons based on physical analyses of 15 Radar sensors. It offers device manufacturers and chipset providers the unique possibility of understanding Radar sensor technology evolution.

• At the end, the report will open on the next generation of radar using large available bandwidth of 4 GHz on the 79 GHz frequency band featuring RFCMOS radar chipset from Ainstein. We look at its characteristics and compare the new architecture to former radar on 24 GHz and 77 GHz.
Radar Sensor

<table>
<thead>
<tr>
<th>Type</th>
<th>OEMs</th>
<th>Reference</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 GHz</td>
<td>Continental</td>
<td>SRR2-A</td>
<td>BSM</td>
</tr>
<tr>
<td>24 GHz</td>
<td>Continental</td>
<td>SRR3-B</td>
<td>BSM</td>
</tr>
<tr>
<td>24 GHz</td>
<td>Veoneer</td>
<td>NB24BS</td>
<td>BSD and/or RCTA</td>
</tr>
<tr>
<td>24 GHz</td>
<td>ZF/Autocruise</td>
<td>AC100</td>
<td>Field Disturbance</td>
</tr>
<tr>
<td>24 GHz</td>
<td>Valeo</td>
<td>MBHL2</td>
<td>BSM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>OEMs</th>
<th>Reference</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 GHz</td>
<td>Continental</td>
<td>ARS4-A</td>
<td>Adaptive Cruise Control</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Bosch</td>
<td>MRR1Plus</td>
<td>Adaptive Cruise Control</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Bosch</td>
<td>LRR4</td>
<td>Adaptive Cruise Control</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Veoneer</td>
<td>MMRV1</td>
<td>Field Disturbance</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Aptiv</td>
<td>SRR2</td>
<td>RSD</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Aptiv</td>
<td>RACAM</td>
<td>Forward Looking</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Aptiv</td>
<td>SRR3</td>
<td>RSD</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Denso</td>
<td>DNMWR008</td>
<td>FM-CW Field Disturbance</td>
</tr>
<tr>
<td>77 GHz</td>
<td>Ainstein</td>
<td>K-77</td>
<td>Long Range Radar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>OEMs</th>
<th>Reference</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 GHz</td>
<td>Ainstein</td>
<td>T-79</td>
<td>Short Range Radar</td>
</tr>
</tbody>
</table>

©2018 by System Plus Consulting | Automotive Radar Overview 2018
Autonomous Driving Car Roadmap: Radar
Radar Module Market Forecast

![Radar module forecast graph]

- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022

- 77G
- 79G
- 24G

Overall market forecast in $M for the years 2016 to 2022.
Physical Comparison – Device Size and Complexity

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>Ref.</th>
<th>Year of</th>
<th>Dimension (mm)</th>
<th>Board Nb.</th>
<th>Integrated EMI</th>
<th>EMI Thickness (mm)</th>
<th>Enclosure Material (Top/Bottom)</th>
<th>Enclosure Metal Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental</td>
<td>SRR2-A</td>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continental</td>
<td>SRR3-B</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veoneer</td>
<td>NB24BS</td>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoCruise</td>
<td>AC100</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeo</td>
<td>MBHL2</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical Comparison – Board Size and Complexity

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>Ref.</th>
<th>Year of fcc certif.</th>
<th>Dimension (mm) Area (mm²)</th>
<th>Board Nb.</th>
<th>Main Board Dimensions (mm) Area (mm²)</th>
<th>PCB Layer Nb. Mounted Type PCB</th>
<th>RF Board Dimensions (mm) Area (mm²)</th>
<th>PCB Layer Nb. Mounted Type PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental</td>
<td>ARS4-A</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch</td>
<td>MRR1Plus</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch</td>
<td>LRR4</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veoneer</td>
<td>MMRV1</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>SRR2</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>RACAM</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>SRR3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denso</td>
<td>DNMW008</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ainstein</td>
<td>K-77</td>
<td>2015 (Release)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical Comparison – RF Design

<table>
<thead>
<tr>
<th>24 GHz</th>
<th>77 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device size & Complexity</td>
<td>Device size & Complexity</td>
</tr>
<tr>
<td>Board Size & Complexity</td>
<td>Board Size & Complexity</td>
</tr>
<tr>
<td>RF Design</td>
<td>RF Design</td>
</tr>
<tr>
<td>Cost of the RF Chipset</td>
<td>Cost of the RF Chipset</td>
</tr>
<tr>
<td>From 24 GHz to 79 GHz</td>
<td>RF Chipset</td>
</tr>
</tbody>
</table>

- **ARS4-A** (Continental)
- **MRR1Plus** (Bosch)
- **LRR4**
- **MMR1Veoneer**
- **SRR2** (Delphi)
- **RACAM** (DENSO)
- **DNMW008**
- **SRR3** (Delphi)
- **K-77** (Ainstein)
Physical Comparison – RF Design

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>Ref.</th>
<th>Year of FCC certif.</th>
<th>RF Board Dimensions (mm) Area (mm²)</th>
<th>MMIC Nb.</th>
<th>MMIC Mfr.</th>
<th>MMIC Technology</th>
<th>Radiator Dimensions (mm) Area (mm²)</th>
<th>Radiator Type</th>
<th>Radiator Nbr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental</td>
<td>ARS4-A</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch</td>
<td>MRR1Plus</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch</td>
<td>LRR4</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veoneer</td>
<td>MMR\V1</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>SRR2</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>RACAM</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphi</td>
<td>SRR3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denso</td>
<td>DNMW008</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ainstein</td>
<td>K-77</td>
<td>2016 (Release)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cost Comparison – RF Chipset

- 24 GHz
 - Device size & Complexity
 - Board Size & Complexity
 - RF Design
 - Cost of the RF Chipset

- 77 GHz
 - Device size & Complexity
 - Board Size & Complexity
 - RF Design
 - Cost of the RF Chipset

- From 24 GHz to 79 GHz
 - RF Chipset
Physical & Cost Comparison – RF Chipset

- 24 GHz
 - Device size & Complexity
 - Board Size & Complexity
 - RF Design
 - Cost of the RF Chipset
- 77 GHz
 - Device size & Complexity
 - Board Size & Complexity
 - RF Design
 - Cost of the RF Chipset

From 24 GHz to 79 GHz
- RF Chipset
MODULES HISTORY – 24 GHz

- **2011**: SRR2-A
- **2012**: SRR3-B
- **2013**: NB24BS
- **2014**: AC100
- **2015**: MBHL2

Physical Analysis
- **24 GHz**
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB24BS
 - AutoCruise AC100
 - Valeo MBHL2
- **77 GHz**
 - Continental ARS4-A
 - Bosch MRR3Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- **79 GHz**
 - Ainstein T-79

Related Reports
- **Autoliv**
- **Veoneer**
- **Valeo**

©2018 by System Plus Consulting | Automotive Radar Overview 2018
Overview / Introduction

Company Profile & Supply Chain

Market Analysis

Physical & Cost Comparison

Physical Analysis

- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2

- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
 - Ainstein T-79

- 79 GHz
 - Denso K-77

Related Reports

About System Plus
ARS4-A

77 GHz Adaptive Cruise Control
Short Range Radar
Continental – ARS4-A – Package View & Dimensions

Physical Analysis
- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Related Reports
- Continental – ARS4-A – Package View & Dimensions

©2018 by System Plus Consulting | Automotive Radar Overview 2018
Continental – ARS4-A – Main ICs

Physical Analysis
- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Main Board Dimensions:

Continentl ARS4-A – Main Board Global View – Optical View
©2017 by System Plus Consulting
Continental – ARS4-A – RF Board

Physical Analysis

- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR3Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

RF Board Dimensions:
Continental – ARS4-A – RF Board
Continental – ARS4-A – RF Board

Physical Analysis

- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB248S
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Related Reports

About System Plus
Continental – ARS4-A – RF Board

Physical Analysis
- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Related Reports
About System Plus
Continental – ARS4-A – RF Board

Physical Analysis
- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Related Reports
About System Plus
Continental – ARS4-A – RF Board – Rx MMIC

- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB248S
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

- Die Dimensions:
- Die Technology:
Physical Analysis
- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB248S
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-77
Continental – ARS4-A – RF Board – Antenna

- **Physical Analysis**
 - 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB2485
 - AutoCruise AC100
 - Valeo MBHL2
 - 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
 - 79 GHz
 - Ainstein T-79

- **Related Reports**
 - About System Plus
Continental – ARS4-A – RF Board – Cross-section

- 24 GHz
 - Continental SRR2-A
 - Continental SRR3-B
 - Veoneer NB248S
 - AutoCruise AC100
 - Valeo MBHL2
- 77 GHz
 - Continental ARS4-A
 - Bosch MRR1Plus
 - Bosch LRR4
 - Veoneer MMRV1
 - Aptiv SRR2
 - Aptiv RACAM
 - Aptiv SRR3
 - Denso DNMW008
 - Ainstein K-77
- 79 GHz
 - Ainstein T-79

Related Reports
About System Plus

©2018 by System Plus Consulting | Automotive Radar Overview 2018 27
Related Reports

RF & System
- **Aptiv’s Third Generation of 77 GHz-Based Short-Range Radar (SRR3)**
- **Ainstein T-79: Automotive 79GHz Short Range Radar**
- **AWR1642 77 & 79 GHz RFCMOS Radar Chipset from Texas Instruments**
- **Continental SRR3-B 24GHz Blind-Spot Radar**
- **Autoliv’s 3rd Generation Automotive Night Vision Camera with FLIR’s ISC0901 Microbolometer**
- **Continental MFC430TA – Forward Automotive Camera for Advanced Driver Assistance Systems**

Market and Technology Reports - Yole Développement
- **Radar Technologies for Automotive 2018**
- **MEMS and Sensors for Automotive - Market and Technology Trends 2017**
Business Models Fields of Expertise

Custom Analyses
(>130 analyses per year)

Reports
(>40 reports per year)

Costing Tools

Trainings

Overview / Introduction
Company Profile & Supply Chain
Market Analysis
Physical & Cost Comparison
Physical Analysis
Related Reports
About System Plus
- Company services
 - Contact
Contact

Headquarters
22 Boulevard Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix, AZ
WESTERN US
T : +1 310 600 8267
laferriere@yole.fr
Troy Blanchette
EASTERN US
T : +1 704 859 0456
troy.blanchette@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 804 371 4887
onoza@yole.fr

Mavis WANG
TAIWAN
T : +886 979 336 809
wang@yole.fr

www.systemplus.fr
ORDER FORM

Please process my order for “Automotive Radar Comparison 2018”
Reverse Costing® – Structure, Process & Cost Report
Ref: SP18368

☐ Full Structure, Process & Cost Report : EUR 4,990*
☐ Annual Subscription offers possible from 3 reports, including this
report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ...
Job Title: ..
Company: ..
Address: ...
City: .. State:
Postcode/Zip: ...
Country: ...
VAT ID Number for EU members:
Tel: ..
Email: ...
Date: ..
Signature: ..

BILLING CONTACT

First Name: ..
Last Name: ..
Email: ...
Phone: ...

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP
• In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
• In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

RETURN ORDER BY:
FAX: +33 2 53 55 10 59
MAIL: SYSTEM PLUS CONSULTING
22, bd Benoni Goullin
Nantes Biotech
44200 Nantes – France
EMAIL: sales@systemplus.fr

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price
changes on www.systemplus.fr. The present document is valid 6 months after
its publishing date: October 2018

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection
of new reverse engineering and costing analyses in various domains.
You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15
Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics
(considered for 2018):
• MEMS & Sensors: Accelerometer – Environment - Fingerprint - Gas
 - Gyroscope - IMU/Combi - Microphone - Optics - Oscillator - Pressure
• Power: GaN - IGBT - MOSFET - Si Diode - SiC
• Imaging: Camera - Spectrometer
• LED and Laser: UV LED – VCSEL - White/blue LED
• Packaging: 3D Packaging - Embedded - SIP - WLP
• Integrated Circuits: IPD – Memories – PMIC - SoC
• RF: FEM - Duplexer
• Systems: Automotive - Consumer - Energy - Telecom

SYSTEMPLUS
CONSULTING
1. INTRODUCTION
The present terms and conditions apply to the offers, sales and deliveries of services managed by System Plus Consulting except in the case of a particular written agreement. Buyer must note that placing an order means an agreement without any restriction with these terms and conditions.

2. PRICES
Prices of the purchased services are those which are in force on the date the order is placed. Prices are in Euros and worked out without taxes. Consequently, the taxes and possible added costs agreed when the order is placed will be charged on these initial prices. System Plus Consulting may change its prices whenever the company thinks it necessary. However, the company commits itself in invoicing at the prices in force on the date the order is placed.

3. REBATES and DISCOUNTS
The quoted prices already include the rebates and discounts that System Plus Consulting could have granted according to the number of orders placed by the Buyer, or other specific conditions. No discount is granted in case of early payment.

4. TERMS OF PAYMENT
System Plus Consulting delivered services are to be paid within 30 days end of month by bank transfer except in the case of a particular written agreement. If the payment does not reach System Plus Consulting on the deadline, the Buyer has to pay System Plus Consulting a penalty for late payment the amount of which is three times the legal interest rate. The legal interest rate is the current one on the delivery date. This penalty is worked out on the unpaid invoice amount, starting from the invoice deadline. This penalty is sent without previous notice. When payment terms are over 30 days end of month, the Buyer has to pay a deposit which amount is 10% of the total invoice amount when placing his order.

5. OWNERSHIP
System Plus Consulting remains sole owner of the delivered services until total payment of the invoice.

6. DELIVERIES
The delivery schedule on the purchase order is given for information only and cannot be strictly guaranteed. Consequently any reasonable delay in the delivery of services will not allow the buyer to claim for damages or to cancel the order.

7. ENTRUSTED GOODS SHIPMENT
The transport costs and risks are fully born by the Buyer. Should the customer wish to ensure the goods against lost or damage on the base of their real value, he must imperatively point it out to System Plus Consulting when the shipment takes place. Without any specific requirement, insurance terms for the return of goods will be the carrier current ones (reimbursement based on good weight instead of the real value).

8. FORCE MAJEURE
System Plus Consulting responsibility will not be involved in non execution or late delivery of one of its duties described in the current terms and conditions if these are the result of a force majeure case. Therefore, the force majeure includes all external event unpredictable and irresistible as defined by the article 1148 of the French Code Civil?

9. CONFIDENTIALITY
As a rule, all information handed by customers to system Plus Consulting are considered as strictly confidential. A non-disclosure agreement can be signed on demand.

10. RESPONSIBILITY LIMITATION
The Buyer is responsible for the use and interpretations he makes of the reports delivered by System Plus Consulting. Consequently, System Plus Consulting responsibility can in no case be called into question for any direct or indirect damage, financial or otherwise, that may result from the use of the results of our analysis or results obtained using one of our costing tools.

11. APPLICABLE LAW
Any dispute that may arise about the interpretation or execution of the current terms and conditions shall be resolved applying the French law. It the dispute cannot be settled out-of-court, the competent Court will be the Tribunal de Commerce de Nantes.