GaN Transistor Comparison 2018

Structural, Process and Costing Report

POWER report by Elena BARBARINI
April 2018 – sample
Table of Contents

Overview / Introduction 4
- Executive Summary
- Reverse Costing Methodology

Technology & Market 8

Company profile 38
- EPC
- TI
- Transphorm
- GaN Systems
- Panasonic

Physical Analysis 49
- **Low Voltage**
 - EPC
 - EPC1010
 - EPC2010C
 - EPC2045
 - EPC2040
 - TI
 - LMG5200
- **Medium Voltage**
 - Transphorm
 - TPH3002PS
 - TPH3206PS
 - TPH3208PS
 - GaN Systems
 - GS66508P
 - GS66506T
 - GS66504B
 - Panasonic
 - PGA26E19BA
 - TI
 - LMG3410

Transistor Manufacturing Process 126
- EPC
- TI
- Transphorm
- GaN Systems
- Panasonic

Cost & Price Analysis 154
- Summary of the cost analysis
- Yields Explanation & Hypotheses
 - **Low Voltage**
 - EPC
 - EPC1010
 - EPC2010C
 - EPC2045
 - EPC2040
 - TI
 - LMG5200
 - **Medium Voltage**
 - Transphorm
 - TPH3002PS
 - TPH3206PS
 - TPH3208PS
 - GaN Systems
 - GS66508P
 - GS66506T
 - GS66504B
 - Panasonic
 - PGA26E19BA
 - TI
 - LMG3410

Feedback 184

System Plus Consulting services 186
Executive Summary

GaN HEMT’s market is very appealing and more and more players are entering; the lowering of prices can make GaN devices a good competitor of the currently used Si-based power switching transistors such as MOSFET and IGBT.

Nevertheless, the technical panorama has still to be structured, and every manufacturer presents its solution on die design and packaging integration. This brings to a strong competition which will accelerate technical innovations and lower the prices. Moreover, GaN business models are still very different, and in the future, we will see a restructuration of the supply chain driven by the main cost factors.

Manufacturers propose different approaches for epitaxy, gate structure, device design, and packaging, all focused on solving the problems linked to GaN’s intrinsic properties and its integration with silicon.

In this report, System Plus Consulting presents an overview of the state of the art of GaN on Si HEMT to highlights the differences in design and manufacturing processes, and their impact on device size and production cost.

Different devices at low and medium voltage from EPC, Texas Instruments, Panasonic, GaN Systems and Transphorm have been analyses. The report proposes detailed optical, SEM and TEM pictures of the packaging, the transistor structure and the epitaxy.

This report also provides an estimated production cost for the IC gate driver, FET, and package. Moreover, this report proposes a comparison between the different components available on the market.
Main Players Roadmap

- **EPC**: First commercial product
- **Fujitsu**: Start production
- **Fujitsu + transphorm**: First commercial product
- **GaN Systems**: First commercial product
- **Navitas**: GaN IC
- **Dialog**: GaN IC
- **Texas Instruments**: 600V power stage
- **System Plus Consulting**: First GaN Power device
- **transphorm**: 80V power stage
- **Panasonic**: First commercial product
- **FAB + ExAGAN**: First commercial product
- **System Plus Consulting**: 600V power stage
- **Texas Instruments**: 600V power stage
- **System Plus Consulting**: First GaN Power device
- **FAB + ExAGAN**: First commercial product

Timeline:
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
Availables GaN devices

Values based on Datasheet
Medium Voltage SJMOSFETs Vs GaN HEMT FOM Comparison

SJ MOSFETs are still able to compete with the early GaN devices; but further optimization seems hard to obtain.

@ Vds 600/650 V

FOM: Rdson * Qg

©2018 by System Plus Consulting | GaN Transistor Technology & Cost Comparison 2018
GaN HEMT Analyzed

High Voltage GaN on Si HEMT

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Year</th>
<th>Device Code</th>
<th>Technology</th>
<th>Packaging</th>
<th>Vds (V)</th>
<th>Id (A) @ 25°C</th>
<th>Rdson (Ohm)</th>
<th>Qg (nC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transphorm</td>
<td>2012</td>
<td>TPH3002PS</td>
<td>cascode gen 0</td>
<td>TO-220 (Source Tab)</td>
<td>600</td>
<td>9</td>
<td>0.29</td>
<td>6.2</td>
</tr>
<tr>
<td>Transphorm</td>
<td>2015</td>
<td>TPH3206PS</td>
<td>cascode gen 1</td>
<td>TO-220 (Source Tab)</td>
<td>600</td>
<td>17</td>
<td>0.15</td>
<td>6.2</td>
</tr>
<tr>
<td>Transphorm</td>
<td>2017</td>
<td>TPH3208PS</td>
<td>cascode gen 2</td>
<td>TO-220 (Source Tab)</td>
<td>650</td>
<td>20</td>
<td>0.11</td>
<td>6.2</td>
</tr>
<tr>
<td>GaN System</td>
<td>2014</td>
<td>GS66508P</td>
<td>p-GaN gate</td>
<td>bottom side cooling</td>
<td>650</td>
<td>30</td>
<td>0.055</td>
<td>5.8</td>
</tr>
<tr>
<td>GaN System</td>
<td>2015</td>
<td>GS66506T</td>
<td>p-GaN gate</td>
<td>top side cooling</td>
<td>650</td>
<td>22.5</td>
<td>0.07</td>
<td>4.4</td>
</tr>
<tr>
<td>GaN System</td>
<td>2015</td>
<td>GS66504B</td>
<td>p-GaN gate</td>
<td>top side cooling</td>
<td>650</td>
<td>15</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>Panasonic</td>
<td>2017</td>
<td>PGA26E19BA</td>
<td>GIT</td>
<td>TO220</td>
<td>600</td>
<td>10</td>
<td>0.12</td>
<td>2.6</td>
</tr>
<tr>
<td>TI</td>
<td>2016</td>
<td>LMG3410</td>
<td>thin p-AlGaN barrier</td>
<td>QFN + driver</td>
<td>600</td>
<td>12</td>
<td>0.09</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Overview / Introduction
- Technology & Market
- Company Profile & Supply Chain
- Physical Analysis
- Manufacturing Process Flow
- Cost & Price Analysis
- Feedbacks
- About System Plus
Power Devices Rdson Evolution – Medium Voltage

- Transphorm has drastically improved its quality in only two years!
GaN Technical Challenges & Potential

AlGaN/GaN HEMTs showed their potential as candidates to substitute Si devices for high frequency applications with high power and low noise.

But.....it faces several technical challenges:

- Epitaxy: lattice mismatch problems between GaN and Si
- Normally ON: the 2DEG (2 dimentional electrons gas) technology is normally ON
- Packaging & Integration:
 - Gate Driver: external vs integrated in the packaging?
 - Assembling: bare die vs packaging protection?
Device design technologies

In order to have normally off, different approaches have been proposed:

- **Enhanced mode**: modify the gate to shift the threshold voltage positively
- **Cascode**: co-packaging of a normally off device with a low voltage normally on MOSFET

<table>
<thead>
<tr>
<th>Cascode</th>
<th>Enhanced mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Advantages</td>
</tr>
<tr>
<td>• Compatible with standard gate drivers</td>
<td>• Easier to integrate at chip and package level</td>
</tr>
<tr>
<td>• Low Vf body diode for reverse operations</td>
<td>• Switching speed controlled by Rg</td>
</tr>
<tr>
<td>Applications</td>
<td>Applications</td>
</tr>
<tr>
<td>Low/medium switching frequencies</td>
<td>• Hard switching applications (eg. Totem Pole)</td>
</tr>
<tr>
<td>Medium power applications</td>
<td>• Low voltage applications</td>
</tr>
<tr>
<td></td>
<td>• Multi chip applications</td>
</tr>
<tr>
<td></td>
<td>• High power applications</td>
</tr>
</tbody>
</table>

Players

- transphorm
- ON Semiconductor
- PANASONIC
- Navitas
- Infineon
- Texas Instruments
- Exagan

Because of the 2DEG, GaN technology is normally off: this is the major challenge for GaN devices.
Packaging is becoming a particular issue for GaN devices.

Different packaging have been proposed to optimise:

- Less Parasitic inductance and resistance
- Smaller footprint
- Higher thermal efficiency

The higher the device frequency, the more important the consequences of parasitics.
In March 2015 Texas Instruments introduced its integrated GaNFET power stage prototype, including a high-frequency driver and GaNFETs in a QFN package.
EPC Analysed Devices

<table>
<thead>
<tr>
<th>HEMT</th>
<th>Voltage</th>
<th>Current at 25°C</th>
<th>Die area</th>
<th>Current density</th>
<th>Rdson</th>
<th>Qg</th>
<th>FOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC1010</td>
<td>200V</td>
<td>12 A</td>
<td>5.76 mm² (1.6x3.6)</td>
<td>2.08 A/mm²</td>
<td>0.027 ohm</td>
<td>7.5 nC</td>
<td>0.2 ohm*nC</td>
</tr>
<tr>
<td>EPC2010C</td>
<td>200V</td>
<td>12 A</td>
<td>5.76 mm² (1.6x3.6)</td>
<td>2.08 A/mm²</td>
<td>0.018 ohm</td>
<td>5.2 nC</td>
<td>0.09 ohm*nC</td>
</tr>
<tr>
<td>EPC2045</td>
<td>100V</td>
<td>16 A</td>
<td>3.75 mm² (1.5x2.5)</td>
<td>4.27 A/mm²</td>
<td>0.007 ohm</td>
<td>5.2 nC</td>
<td>0.036 ohm*nC</td>
</tr>
<tr>
<td>EPC2040</td>
<td>15V</td>
<td>3.4 A</td>
<td>1.06 mm² (0.85x1.2)</td>
<td>3.2 A/mm²</td>
<td>0.03 ohm</td>
<td>0.745 nC</td>
<td>0.022 ohm*nC</td>
</tr>
</tbody>
</table>
EPC1010

- The package type is a WLP
- Package size: 1.6mm x 3.6mm x 0.73mm
- The package markings include the following markings:

 1010
 9B25
 2891
LMG5200 Package characteristics

- The package type is a QFM
- Package size: 6mm x 8mm x 2mm
- The package markings include the following markings:
 - TI logo
 - Year Month: 2017 May
 - Pb free

Physical Analysis
- Low Voltage
 - EPC
 - EPC1010
 - EPC2010C
 - EPC2045
 - EPC2040
 - TI
 - LMG5200

- Medium Voltage
 - Transphorm
 - TPH1002PS
 - TPH206PS
 - TPH208PS
 - GaN Systems
 - GS66508P
 - GS66506T
 - GS66504B
 - Panasonic
 - PGA26E19BA
 - TI
 - LMG3410

Manufacturing Process Flow

Cost & Price Analysis

Feedbacks

About System Plus

©2018 by System Plus Consulting | GaN Transistor Technology & Cost Comparison 2018
TPH3002PS

- The epitaxy structure is realized with different layer:
 - Total thickness: 5.1 µm
 - Gate width: 1.66 µm

Die cross section
MOSFET die Dimensions

- Die dimensions: 1.6 mm² (1.7mm x 0.95mm)

Die Overview

Die – Cross section

Die Overview

Die – Cross section
Devices Supply chain

<table>
<thead>
<tr>
<th>HEMT die</th>
<th>Packaging</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Front End</td>
<td>Back end</td>
</tr>
<tr>
<td>EPC (USA)</td>
<td>Episil (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>TI (USA)</td>
<td>Episil (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>Transphorm (USA)</td>
<td>Fujitsu (JP)</td>
<td></td>
</tr>
<tr>
<td>GaN Systems (Ca)</td>
<td>TSMC (Tw)</td>
<td></td>
</tr>
<tr>
<td>Panasonic (Japan)</td>
<td>Panasonic (JP)</td>
<td></td>
</tr>
</tbody>
</table>

Power Device value chain
A thin layer of AlN is deposited on the silicon substrate. The silicon substrate is a carrier substrate and has no function in the transistor.

The AlN insulates the GaN layers from the silicon substrate and is the nucleation layer for the next layer.

A template layer in AlGaN is deposited. It is composed of two layers of AlGaN

Epitaxy of the GaN layer.

A thin layer of AlGaN is deposited. This layer provides the 2D electron gas.

A layer of GaN is deposited.

Annealing
EPC GaN Transistor - Process Flow

Implantation:
- Implantation in the AlGaN layer
- Implantation in the gate GaN layer

Gate:
- Pattern and GaN etching

Gate:
- TiN deposition
- Pattern Gate Metal

Drawing not to Scale

©2018 by System Plus Consulting | GaN Transistor Technology & Cost Comparison 2018
EPC GaN Transistor - Process Flow

Metal 2 and 3

- Tungsten plug
- Metal2
- IMD 2

Passivation

- Silicon contact
- Metal 3
- Passivation deposition and pattern

Contact between the metal 3 and the silicon substrate
In our simulation, we assume a development and a production ramp up without important technical problem.
GaN Systems Wafer Cost

Front-End Cost Breakdown

<table>
<thead>
<tr>
<th></th>
<th>GS66508P</th>
<th>GS66506T</th>
<th>GS66504B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw wafer Cost (Si)</td>
<td>$60.00</td>
<td>$60.00</td>
<td>$60.00</td>
</tr>
<tr>
<td>Epitaxy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front + Back End Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMT Front-End Cost</td>
<td>$575.65</td>
<td>$575.65</td>
<td>$575.65</td>
</tr>
</tbody>
</table>

Yield Losses Cost Breakdown

- **Raw wafer Cost (Si)**: 10%
- **Epitaxy**: 37%
- **Front + Back End Cost**: 32%
- **Yield losses Cost**: 21%
Panasonic Wafer & Die cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>PGA26E19BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw wafer Cost (Si)</td>
<td>$60.00</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>$240.57</td>
</tr>
<tr>
<td>Front + Back End Cost</td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
</tr>
<tr>
<td>HEMT Front-End Cost</td>
<td>$809.90</td>
</tr>
</tbody>
</table>

Cost & Price Analysis

- **Low Voltage**
 - EPC
 - EPC1010
 - EPC2010C
 - EPC2045
 - EPC2040
 - TI
 - LM65200
- **Medium Voltage**
 - Transphorm
 - TPH3206PS
 - TPH3208PS
 - GaN Systems
 - GS66508P
 - GS66506T
 - GS66504B
 - Panasonic
 - PGA26E19BA
 - TI
 - LMG3410

Feedbacks

- Panasonic Wafer & Die cost
Panasonic Component cost & price

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMT Die cost</td>
<td>$0.286</td>
<td>16.1%</td>
</tr>
<tr>
<td>Packaging cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final test & Calibration cost</td>
<td>$0.01</td>
<td>0.5%</td>
</tr>
<tr>
<td>Yield losses cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Cost</td>
<td>$0.459</td>
<td>26%</td>
</tr>
<tr>
<td>Ampere Cost</td>
<td>$0.05</td>
<td></td>
</tr>
</tbody>
</table>

Panasonic Component cost breakdown

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component cost</td>
<td>$0.459</td>
<td></td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$0.247</td>
<td>+35%</td>
</tr>
<tr>
<td>Component price</td>
<td>$0.705</td>
<td></td>
</tr>
<tr>
<td>Panasonic</td>
<td></td>
<td>35.0%</td>
</tr>
</tbody>
</table>

Gross Margin

- Low Voltage
 - EPC
 - EPC1010
 - EPC2010C
 - EPC2045
 - EPC2040
 - TI
 - LM65200
- Medium Voltage
 - Transphorm
 - TPH3002PS
 - TPH3206PS
 - TPH3208PS
 - GaN Systems
 - GS66508P
 - GS66506T
 - GS66504B
 - Panasonic
 - PGA26E19BA
 - TI
 - LMG3410
Wafer & Die Structure and Cost Comparison

GaN Systems (650V, 15A) 6.5 mm²
Transphorm (600V, 17A) 7.12 mm²
Panasonic (600V, 10A) 4.6 mm²
TI (600V, 12A) 12.6 mm²

P-GaN Gate
Normally ON
Gate Injection Transistor
Thin p-AlGaN barrier

Wafer Cost Structure Comparison

Sample
Complementary Report

Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trends – by Yole Développement

The GaN power device supply chain is acting to support market growth.

KEY FEATURES OF THE REPORT

- In-depth analysis of GaN’s penetration in different applications including power supplies, PV, EV/HEV, UPS, lidar, wireless power and electrical transmission
- State-of-the-art GaN power devices, including product charts and device descriptions
- Description of the GaN power industrial landscape, from epitaxy and device design to device processing
- Discussion of GaN power market dynamics
- State-of-the-art for power GaN packaging
- Reliability overview on GaN
- Market projection for the GaN epitaxy market through 2021 by value and volume

Bundle offer possible with the GaN-on-Silicon Transistor Comparison 2018 Report by System Plus Consulting, contact us for more information.
Related Reports

Power Semiconductors & Compound
- Transphorm GaN-on-Silicon HEMT TPH3206PS
- Efficient Power Conversion EPC2040
- GaN Systems GaNpx Top Cooled – AT&S ECP® Embedded Power Die Package
- Transphorm TPH3002PS 600V GaN on Silicon HEMT
- GaN Systems – 650V GaN on Silicon HEMT AT&S ECP® Embedded Power Die Package
- EPC2010 GaN 200V power transistor
- Infineon – IPB60R280C6 600V CoolMOS C6 MOSFET
- Toshiba – TK31E60W 4thgen DTMOS 600V Super-Junction MOSFET
- Texas Instruments LMG3410 600V GaN FET Power Stage

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

POWER ELECTRONICS
Business Models Fields of Expertise

Custom Analyses
(>130 analyses per year)

Reports
(>40 reports per year)

Costing Tools

Trainings

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost & Price Analysis

Feedbacks

About System Plus
- Company services
- Related reports
- Contact
- Legal

Company services

Related reports

Contact

Legal

©2018 by System Plus Consulting | GaN Transistor Technology & Cost Comparison 2018
Please process my order for:

- GaN on Si Transistor Comparison 2018 Structural, Process & Costing Report: EUR 4,990*

*Bundle offer possible for the two previous reports, contact us for more information

For price in dollars please use the day’s exchange rate
All reports are delivered electronically in pdf format
For French customer, add 20% for VAT
Our prices are subject to change. Please check our new releases and price changes on www.systemplus.fr. The present document is valid 6 months after its publishing date: April 2018

SHIP TO
Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City: State:
Postcode/Zip:
Country:

VAT ID Number for EU members:
Tel:
Email:
Date:
Signature:

BILLING CONTACT
First Name: Last Name:
Email:
Phone:

PAYMENT
DELIVERY on receipt of payment: VISA

By credit card:
Number: ___________ ___________ ___________ ___________
Expiration date: ___________ ___________
Card Verification Value: ___________

By bank transfer:
HSBC - CAE - Le Terminal - 2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

In EUR
Bank code: 30056 - Branch code: 00955 - Account: 09550003234
IBAN: FR76 3005 6009 5509 5500 0323 439

In USD
Bank code: 30056 - Branch code: 00955 - Account: 09550003247
IBAN: FR76 3005 6009 5509 5500 0324 797

Return order by:
FAX: +33 2 53 55 10 59
MAIL: SYSTEM PLUS CONSULTING
22, bd Benoni Goullin, Nantes Biotech
44200 Nantes – France

Contact:
EMAIL: sales@systemplus.fr
TEL: +33 2 40 18 09 16

ABOUT SYSTEM PLUS CONSULTING
System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
TECHNOLOGY ANALYSIS - COSTING SERVICES - COSTING TOOLS - TRAININGS

www.systemplus.fr - sales@systemplus.fr
TERMS AND CONDITIONS OF SALES

1. INTRODUCTION
The present terms and conditions apply to the offers, sales and deliveries of services managed by System Plus Consulting except in the case of a particular written agreement. Buyer must note that placing an order means an agreement without any restriction with these terms and conditions.

2. PRICES
Prices of the purchased services are those which are in force on the date the order is placed. Prices are in Euros and worked out without taxes. Consequently, the taxes and possible added costs agreed when the order is placed will be charged on these initial prices. System Plus Consulting may change its prices whenever the company thinks it necessary. However, the company commits itself in invoicing at the prices in force on the date the order is placed.

3. REBATES and DISCOUNTS
The quoted prices already include the rebates and discounts that System Plus Consulting could have granted according to the number of orders placed by the Buyer, or other specific conditions. No discount is granted in case of early payment.

4. TERMS OF PAYMENT
System Plus Consulting delivered services are to be paid within 30 days end of month by bank transfer except in the case of a particular written agreement.
If the payment does not reach System Plus Consulting on the deadline, the Buyer has to pay System Plus Consulting a penalty for late payment the amount of which is three times the legal interest rate. The legal interest rate is the current one on the delivery date. This penalty is worked out on the unpaid invoice amount, starting from the invoice deadline. This penalty is sent without previous notice.
When payment terms are over 30 days end of month, the Buyer has to pay a deposit which amount is 10% of the total invoice amount when placing his order.

5. OWNERSHIP
System Plus Consulting remains sole owner of the delivered services until total payment of the invoice.

6. DELIVERIES
The delivery schedule on the purchase order is given for information only and cannot be strictly guaranteed. Consequently any reasonable delay in the delivery of services will not allow the buyer to claim for damages or to cancel the order.

7. ENTRUSTED GOODS SHIPMENT
The transport costs and risks are fully born by the Buyer. Should the customer wish to ensure the goods against lost or damage on the base of their real value, he must imperatively point it out to System Plus Consulting when the shipment takes place. Without any specific requirement, insurance terms for the return of goods will be the carrier current ones (reimbursement based on good weight instead of the real value).

8. FORC MAVEU
System Plus Consulting responsibility will not be involved in non execution or late delivery of one of its duties described in the current terms and conditions if these are the result of a force majeure case. Therefore, the force majeure includes all external event unpredictable and irresistibile as defined by the article 1148 of the French Code Civil?

9. CONFIDENTIALITY
As a rule, all information handed by customers to system Plus Consulting are considered as strictly confidential. A non-disclosure agreement can be signed on demand.

10. RESPONSABILIT LIMITATION
The Buyer is responsible for the use and interpretations he makes of the reports delivered by System Plus Consulting. Consequently, System Plus Consulting responsibility can in no case be called into question for any direct or indirect damage, financial or otherwise, that may result from the use of the results of our analysis or results obtained using one of our costing tools.

11. APPLICABLE LAW
Any dispute that may arise about the interpretation or execution of the current terms and conditions shall be resolved applying the French law.
It the dispute cannot be settled out-of-court, the competent Court will be the Tribunal de Commerce de Nantes.
Contact

Headquarters
22, bd Benoni Goullin
Nantes Biotech
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix
USA
(310) 600-8267
laferriere@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
onozawa@yole.fr

Mavis WANG
GREATER CHINA
wang@yole.fr

www.systemplus.fr