Apple iPhone X – IR Dot Projector

Dot Projector bundle including Heptagon

Imaging report by Sylvain Hallereau
December 2017
Table of Contents

Overview / Introduction
- Executive Summary
- Reverse Costing Methodology

Company Profile
- Supply chain
- Heptagon
- Lumentum
- TrueDepth Module Supply Chain
- Apple iPhone X Teardown

Physical Analysis
- Synthesis of the Physical Analysis
- Physical Analysis Methodology
- Dot Projector teardown
 - Ceramic Package
 - View, Dimensions & Marking
 - Cross-Section
 - Process Characteristics
 - Broadcom BCM15952 IC
 - Schottky Diode
 - NIR VCSEL
 - Die View, Dimensions & Marking
 - Cavity
 - Cross-Section
 - Process Characteristics
 - Folded Optic
 - View, Dimensions & Marking
 - Disassembly & Main Blocks Identification
 - Lens Cross-Section
 - Process Characteristics
 - Active DOE
 - DOE Dimensions
 - DOE Disassembly & Main Blocks Identification
 - DOE Cross Section
 - Process Characteristics
- Comparison: Apple Dot Projector, Intel Real Sense, PMD/Infineon

Manufacturing Process Flow
- Global Overview of the Dot Projector
- Package Front-End Process Flow
- Package Fabrication Unit
- NIR VCSEL Front-End Process
- NIR VCSEL Wafer Fabrication Unit
- Folded Optic Wafer Process Flow
- Folded Optic Wafer Fabrication Unit
- DOE Wafer Process Flow
- DOE Wafer Fabrication Unit
- Final Assembly Unit

Cost Analysis
- Overview of the Cost Analysis
- Yields Explanation and Hypotheses
- Integrated Circuit
- Ceramic Package
- NIR VCSEL
- Folded Optic
 - Folded Optic Front-End Cost
 - Folded Optic Front-End Cost per process steps
 - Folded Optic Back-End 0: Probe Test and Dicing
 - Folded Optic Wafer and Die Cost
 - Folded Optic Component Cost
- DOE Active
- Back-End: Final Assembly Cost
- Back-End: Final Assembly Cost per Process Step
- 3D Illumination Module Component Cost

Estimated Price Analysis
- 3D Illumination Module

Company services

©2017 System Plus Consulting | Apple iPhone X 3D Dot Projector
Executive Summary

• The Apple iPhone X brings totally new functionality based on the TrueDepth technology. This project is issued from a collaboration including Lumentum for the VCSEL diode and Heptagon for the active DOE and folded optic.

• The iPhone X implements this technology using a Dot Projector. The subsystem features a 30,000 dots projector from Heptagon. We estimate that the Active DOE and the folded optic are manufactured by Heptagon. The electronic package is assembled by an OSAT. The IC driver is designed by Broadcom. The no-grid VCSEL array diode is manufactured by Lumentum. Heptagon performs the assembly of the Dot Projector.

• To provide the 30,000 dots, the VCSEL supplies the IR light and the Folded Optic directs the IR light to the Active Diffractive Optical Element (DOE). Finally, the Active DOE divides the light beam into 30,000 dots of light. The VCSEL is driven in power, beam shape and frequency by an ASIC from Broadcom.

• The report includes technology and cost analysis of the Dot Projector. These analyses provide the technical intelligence necessary to understand this technology.

• A comparison between the Dot Projector and the Intel Real Sense projector and the PMD/Infineon solution are performed.
The Dot Projector module has a ceramic substrate with a separate ceramic block under the VCSEL.
Dot Projector Dimension

©2017 System Plus Consulting | Apple iPhone X 3D Dot Projector
Dot Projector Teardown

The optical block is glued on top of the ceramic substrate.
Dot Projector – AlN Ceramic
NIR VCSEL Die View and Dimensions

Die Area: **XXmm²**
(xx x xx mm)

Nb of PGDW per 3-inch wafer: **XX**

Pad number: **x**

Wire Bonding: **XX**
NIR VCSEL Die Cross-Section

Seed layer in titanium for the gold layer: 0.05µm
Folded Optic - Disassembly
Active Diffractive Optical Element - Disassembly

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis
- Synthesis
- Teardown
- Ceramic Package
- IC Broadcom
- NIR VCSEL
- Folded Optic
- Active DOE
- Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

About System Plus
Broadcom BCM15952 Front-End Cost

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw wafer Cost (Si 300mm)</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost Analysis
- Synthesis
- Supply Chain
- Yields
 - Broadcom BCM15952 Cost
 - NIR VCSEL Wafer & Die Cost
 - Ceramic Package Cost
 - Folded Optic Cost
 - Active DOE Cost
 - Assembly Cost
 - Component Cost

Selling Price Analysis
- Die Price
- Gross Profit
- Mask set depreciation

The **front-end cost** for the IC ranges from [X] to [Y] according to yield variations.

The largest portion of the manufacturing cost is due to the [Z] cost.
NIR VCSEL Front-End Cost per Process Steps

Cost Analysis
- Synthesis
- Supply Chain
- Yields
- Broadcom BCM15952 Cost
- NIR VCSEL Wafer & Die Cost
- Ceramic Package Cost
- Folded Optic Cost
- Active DOE Cost
- Assembly Cost
- Component Cost

Selling Price Analysis

About System Plus
3D Illumination Module Estimated Manufacturer Price

About System Plus
COMPANY SERVICES
Business Models a Fields of Expertise

Custom Analyses
(>130 analyses per year)

Reports
(>40 reports per year)

Costing Tools

Trainings

©2017 System Plus Consulting | Apple iPhone X 3D Dot Projector
Dear Customer,

Thank you for giving us the opportunity to serve you better.

Please help us by taking only a few seconds to give us your thoughts about the Reverse Costing Report that you have received.

We appreciate to work with you and want to make sure we meet your expectations.

Sincerely,

Wilfried THERON
Quality Manager

Click below to access to our online Customer Satisfaction Survey.
DISCLAIMER

System Plus Consulting provides cost studies based on its knowledge of the manufacturing and selling prices of electronic components and systems. The given values are realistic estimates which do not bind System Plus Consulting nor the manufacturers quoted in the report. System Plus Consulting is in no case responsible for the consequences related to the use which is made of the contents of this report. The quoted trademarks are property of their owners.

Reverse Costing® is a deposed brand, by System Plus Consulting.

SERVICES

Reverse costing analysis represents the best cost/price evaluation given the publically available data, and estimates completed by industry experts.

These results are open for discussion. We can reevaluate this circuit with your information.