Micro-light emitting diodes (microLED) are an emissive display technology. Just like organic light emitting diodes (OLED), they offer high contrast, high speed, and wide viewing angle. However, they could also deliver wider color gamut, dramatic – orders of magnitude – higher brightness, significantly reduced power consumption and improved lifetime, ruggedness and environmental stability. In addition, microLEDs allow the integration of sensors and circuits, enabling thin displays with embedded sensing capabilities such as fingerprint identification and gesture control.

The first microLED commercial product was unveiled by Sony in 2016 in the form of a small-pitch LED video display where traditional packaged LEDs are replaced by microLEDs. The first consumer killer-app could come in the form of smartwatches, propelled by Apple, which invested in the technology by buying Luxvue in 2014. MicroLEDs could also eventually dominate augmented and mixed reality displays thanks to their unique ability to deliver both the brightness and low power consumption required for the application.

Initial success in smartwatches could accelerate technology and supply chain maturation, making microLED competitive against OLED in high end TVs, tablets and laptops. Although less disruptive for those applications, microLED would still bring the best of OLED and liquid crystal displays (LCD) together. Smartphones will be a tough nut to crack and require further technology improvement in the manufacturing and handling of very small microLEDs (< 5 µm). In our most optimistic scenario, the market for microLED displays could reach up to 330 million units by 2025.

MICROLED DISPLAYS COULD DISRUPT LCD AND OLED

Micro-light emitting diodes (microLED) are an emissive display technology. Just like organic light emitting diodes (OLED), they offer high contrast, high speed, and wide viewing angle. However, they could also deliver wider color gamut, dramatic – orders of magnitude – higher brightness, significantly reduced power consumption and improved lifetime, ruggedness and environmental stability. In addition, microLEDs allow the integration of sensors and circuits, enabling thin displays with embedded sensing capabilities such as fingerprint identification and gesture control.

The first microLED commercial product was unveiled by Sony in 2016 in the form of a small-pitch LED video display where traditional packaged LEDs are replaced by microLEDs. The first consumer killer-app could come in the form of smartwatches, propelled by Apple, which invested in the technology by buying Luxvue in 2014. MicroLEDs could also eventually dominate augmented and mixed reality displays thanks to their unique ability to deliver both the brightness and low power consumption required for the application.

Initial success in smartwatches could accelerate technology and supply chain maturation, making microLED competitive against OLED in high end TVs, tablets and laptops. Although less disruptive for those applications, microLED would still bring the best of OLED and liquid crystal displays (LCD) together. Smartphones will be a tough nut to crack and require further technology improvement in the manufacturing and handling of very small microLEDs (< 5 µm). In our most optimistic scenario, the market for microLED displays could reach up to 330 million units by 2025.

MICROLED DISPLAYS COULD DISRUPT LCD AND OLED

Micro-light emitting diodes (microLED) are an emissive display technology. Just like organic light emitting diodes (OLED), they offer high contrast, high speed, and wide viewing angle. However, they could also deliver wider color gamut, dramatic – orders of magnitude – higher brightness, significantly reduced power consumption and improved lifetime, ruggedness and environmental stability. In addition, microLEDs allow the integration of sensors and circuits, enabling thin displays with embedded sensing capabilities such as fingerprint identification and gesture control.

The first microLED commercial product was unveiled by Sony in 2016 in the form of a small-pitch LED video display where traditional packaged LEDs are replaced by microLEDs. The first consumer killer-app could come in the form of smartwatches, propelled by Apple, which invested in the technology by buying Luxvue in 2014. MicroLEDs could also eventually dominate augmented and mixed reality displays thanks to their unique ability to deliver both the brightness and low power consumption required for the application.

Initial success in smartwatches could accelerate technology and supply chain maturation, making microLED competitive against OLED in high end TVs, tablets and laptops. Although less disruptive for those applications, microLED would still bring the best of OLED and liquid crystal displays (LCD) together. Smartphones will be a tough nut to crack and require further technology improvement in the manufacturing and handling of very small microLEDs (< 5 µm). In our most optimistic scenario, the market for microLED displays could reach up to 330 million units by 2025.

MICROLED DISPLAYS COULD DISRUPT LCD AND OLED

Micro-light emitting diodes (microLED) are an emissive display technology. Just like organic light emitting diodes (OLED), they offer high contrast, high speed, and wide viewing angle. However, they could also deliver wider color gamut, dramatic – orders of magnitude – higher brightness, significantly reduced power consumption and improved lifetime, ruggedness and environmental stability. In addition, microLEDs allow the integration of sensors and circuits, enabling thin displays with embedded sensing capabilities such as fingerprint identification and gesture control.

The first microLED commercial product was unveiled by Sony in 2016 in the form of a small-pitch LED video display where traditional packaged LEDs are replaced by microLEDs. The first consumer killer-app could come in the form of smartwatches, propelled by Apple, which invested in the technology by buying Luxvue in 2014. MicroLEDs could also eventually dominate augmented and mixed reality displays thanks to their unique ability to deliver both the brightness and low power consumption required for the application.

Initial success in smartwatches could accelerate technology and supply chain maturation, making microLED competitive against OLED in high end TVs, tablets and laptops. Although less disruptive for those applications, microLED would still bring the best of OLED and liquid crystal displays (LCD) together. Smartphones will be a tough nut to crack and require further technology improvement in the manufacturing and handling of very small microLEDs (< 5 µm). In our most optimistic scenario, the market for microLED displays could reach up to 330 million units by 2025.

MICROLED DISPLAYS COULD DISRUPT LCD AND OLED

Micro-light emitting diodes (microLED) are an emissive display technology. Just like organic light emitting diodes (OLED), they offer high contrast, high speed, and wide viewing angle. However, they could also deliver wider color gamut, dramatic – orders of magnitude – higher brightness, significantly reduced power consumption and improved lifetime, ruggedness and environmental stability. In addition, microLEDs allow the integration of sensors and circuits, enabling thin displays with embedded sensing capabilities such as fingerprint identification and gesture control.

The first microLED commercial product was unveiled by Sony in 2016 in the form of a small-pitch LED video display where traditional packaged LEDs are replaced by microLEDs. The first consumer killer-app could come in the form of smartwatches, propelled by Apple, which invested in the technology by buying Luxvue in 2014. MicroLEDs could also eventually dominate augmented and mixed reality displays thanks to their unique ability to deliver both the brightness and low power consumption required for the application.

Initial success in smartwatches could accelerate technology and supply chain maturation, making microLED competitive against OLED in high end TVs, tablets and laptops. Although less disruptive for those applications, microLED would still bring the best of OLED and liquid crystal displays (LCD) together. Smartphones will be a tough nut to crack and require further technology improvement in the manufacturing and handling of very small microLEDs (< 5 µm). In our most optimistic scenario, the market for microLED displays could reach up to 330 million units by 2025.
this issue is a key priority for companies involved in microLEDs. Some such as VueReal or Mikro-Mesa have reported significant improvement.

Efficiently manipulating high volumes of microLEDs and positioning them on the backplane is another major area. Assembling a single 4K display would take more than a month using traditional pick and place equipment! Companies such as Apple, X-Celeprint, Playnitride and others have developed massively parallel pick and place technologies that can process tens of thousands to millions of microLEDs simultaneously. However, the handling of the smaller size (<10 µm) chips and positioning accuracy needs further work. Alternatively, companies such as VueReal or Rohinni are developing “semi-continuous” processes akin to traditional printing.

In modern displays, dead or defective pixels are not acceptable. Achieving 100% combined yields in epitaxy, chip manufacturing and transfer is nothing short of utopia. MicroLED display manufacturers must therefore develop effective defect management strategies combining pixel redundancies and/or individual pixel repair depending on the characteristics of the display.

Other challenging technology nodes include color conversion, light extraction and beam shaping, all subjects of intense research, licensing and mergers and acquisition activities.

IF SUCCESSFUL, MICROLED DISPLAYS COULD HAVE PROFOUND IMPACT ON BOTH THE LED AND DISPLAY SUPPLY CHAINS

Many startups and large companies are working on microLEDs, from LED makers such as Epistar, Nichia or Osram to display makers like AUO, BOE or CSOT and original equipment manufacturers (OEMs) such as Apple or Facebook/Oculus.

Enabling large scale microLED displays requires bringing together three major disparate technologies and supply chain elements: LED, thin-film transistor (TFT) backplane and chip transfer. The supply chain is complex and lengthy compared with that of traditional displays. Each process is critical and managing every aspect effectively will be challenging. No single player can solve all the issues and it seems unlikely that any will fully vertically integrate. Small companies could bring together the different technologies to serve the augmented reality (AR) market, but for high volume consumer applications such as mobiles or TVs, only a strong push from a leading OEM can enable a supply chain. Apple is the most likely candidate with enough leverage and financial strength to bring all partners together. Other candidates include Oculus, which has also invested in microLEDs for AR/mixed reality (MR) applications.

Each participant will attempt to capture as much added value as it can. For LED makers, low defect requirements and high resolution features of microLED means large investments in new clean room and lithography equipment which might be better suited to CMOS foundries. Traditional display makers are used to manufacturing both back and front planes in an integrated fashion and delivering finished panels to OEMs. With microLEDs, they will struggle against becoming component suppliers, only providing a TFT backplane to whichever participant will produce the final display assembly: OEMs or outsourced semiconductor assembly and test (OSAT) players.

Some companies will benefit from microLED displays independently of how the supply chain is shaped. These beneficiaries include metal-organic chemical vapor deposition (MOCVD) reactor and other LED equipment manufacturers as well as wafer suppliers. For the latter, however, sapphire manufacturers will have to keep an eye on a possible come back of the old LED-on-silicon idea which could have definite advantages in microLED manufacturing.
OBJECTIVES OF THE REPORT
Understand microLED display technologies:
- Benefits and drawbacks versus other display technologies
- Key technology elements and associated challenges and cost drivers
- Technology roadblocks
- Which applications could microLED display address and when?
- Detailed analysis and roadmaps for major display applications
- How disruptive for incumbent technologies?

Competitive landscape and supply chain:
- Identify the key players and IP owners in technology development and manufacturing
- Scenarios for the microLED display supply chain
- Impact on the LED supply chain
- Impact on the display supply chain

MARKET & TECHNOLOGY REPORT

Dr. Eric Virey serves as a Senior Market and Technology Analyst at Yole Développement (Yole), the “More than Moore” market research and strategy consulting company. Eric is a daily contributor to the development of LED, OLED, and Display activities at Yole, with a large collection of market and technology reports as well as multiple custom consulting projects: business strategy, identification of investments or acquisition targets, due diligence (buy/sell side), market and technology analysis, cost modeling, technology scouting, etc. Thanks to its deep knowledge of the LED/OLED and displays related industries, Eric has spoken in more than 30 industry conferences worldwide over the last 5 years. He has been interviewed and quoted by leading media over the world.

Previously Eric has held various R&D, engineering, manufacturing and business development positions with Fortune 500 Company Saint-Gobain in France and the United States.

Dr. Eric Virey holds a PhD in Optoelectronics from the National Polytechnic Institute of Grenoble.

COMPLETED COMPANIES CITED IN THE REPORT (non exhaustive list)
Aledia (FR), Allos Semiconductor (DE), Apple (US), AUO (TW), BOE (CN), CEA-LETI (FR), CIOMP (CN), Columbia University (US), Coolege (CA), Cree (US), CSOT (CN), eMagin (US), Epistar (TW), Epson (JP), Facebook (US), Foxconn (TW), Fraunhofer Institute (DE), Glo (SE), GlobalFoundries (US), Goertek (CN), Hiphoton (TW), HKUST (HK), HTC (TW), Ignis (CA), InfiniLED (UK), Intel (US), ITRI (TW), Kansas State University (US), Kopin (US), Lumioide (US), Luxvue (US), Metavision (US), Microsoft (US), Mikro-Mesa (TW), mLed (UK), Nichia (JP), Nth Degree (US), Oclus (US), Osterhout Design Group (US), Osram (DE), Ostendo (US), Playnitride (TW), PSi Co (KR), Rohinni (US), Saitama University (JP), Samsung (KR), Sanan (CN), Semprius (US), Sharp (JP), Sony (JP), Strachclyde University (UK), Sun Yat-Sen University (TW), Texas Tech (US), TSMC (TW), Tyndall National Institute (IE), University of Illinois (US), VelLASE (US), VueReal (CA), Vuzix (US), X-Celeprint (IE).

TABLE OF CONTENTS (complete content on i-Micronews.com)
Scope of the report 8
Executive summary 13
Introduction 52
MicroLED displays frontplane & pixel structures 68
- Backend architecture and pixel bank structure
- MicroLED display structure: monochrome vs color
- Pixel fill factor and added display functionalities
- MicroLED display backplane
- Impact on microLED driving and assembly technology
MicroLED epitaxy 106
- Epitaxy defects and dead pixels
- Wavelength homogeneity and consistency
- Brightness and voltage variations
- Impact on supply chain
Chip manufacturing and singulation 115
- Chip singulation
- Bonding and etching: Apple-Luxvue
- Anchor and breakable tethers: X-Celeprint
- Chip manufacturing
- Impact on supply chain
Transfer and assembly technologies 125
Massively parallel pick and place and printing processes 127
- Transfer sequences
- Transfer array vs. display pixel pitch
- Throughput and cost drivers
- Edge effects
- Pick and place processes
- Die stabilization, release and selection
- Pick up methods
- Luxvue
- X-Celeprint
- Die encapsulation
- Stretcheable film
- Semi-continuous processes
- Fluidic assembly
- Key IP holders and conclusion
Large monolithic microLED arrays 160
- The challenge for high pixel density
- Full array level microdisplay manufacturing
- Hybridization on CMOS: LETI
- Monolithic integration: Lumioide, eMagin, Osram, NthDegree
- Micro-wire microLED arrays: Aledia
- 3D integration: Ostendo
Light extraction and viewing angles 175
- Die-level beam shaping and extraction
- Array-level beam shaping
- External micro optics
- Viewing angle and power consumption
Color conversion 183
- Color gamut
- Color conversion
- Phosphors
- Quantum dots
- Benefits and challenges
- Challenges for microLED displays
- QD vs phosphors: summary
- Quantum wells converters
Defect management 201
- Bad pixels
- Emitter redundancy
- Defect management strategies
Applications and markets for microLED displays 212
- Epiwafer and transfer cost per application
- MicroLED attributions vs application requirements
- MicroLED application roadmap and SWOT per application
- 2017-2025 microLED adoption forecast
Virtual reality 224
- The reality-to-virtual-reality continuum
- VR displays: FOV, resolution and pixel density, refresh rates, brightness
- Computing power and bandwidth
- Foveated rendering
- Tradeoffs for the design of a VR headset
- Microdisplays
- MicroLED displays for VR: transfer-based (large displays)
- MicroLED microdisplays
Augmented and mixed reality 244
- Display requirements
- MicroLED displays for AR and MR
- Comparison of AR displays technologies
- 2017 – 2027 AR/VR market forecasts
- Head up displays
- 2020-2027 MicroLED scenario for AR/VR and HMDs
Smartwatches 253
- MicroLED for smartwatches
- 2017-2025 forecast
- MOVCID requirements
- Transfer Tools requirements
TVs 262
- MicroLED vs OLED and QD-LCD
- Comparison of AR displays technologies
- 2017 – 2027 AR/VR market forecasts
- Head up displays
- 2020-2027 MicroLED scenario for AR/VR and HMDs
Tablets 284
- MicroLED tablet panel costs
- 2017-2025 volume forecast and MOVCID requirements
- Transfer tools requirements
Laptops and convertibles 289
- MicroLED in laptops
- 2017-2025 volume forecast and MOVCID requirements
- Transfer tools requirements
Desktop monitors 296
- 2017-2025 volume forecast and MOVCID requirements
- Transfer tools requirements
Large video displays 301
- 2017-2025 microLED large video displays
Others 304
- Competitive landscape 308
- Activity and leading patent holders
- Key players and technology focus
- Significant industry events
- The Apple ecosystem
- Taiwan ecosystem
Supply chain 317
- Substrates and MOVCID requirements
- Wafer supply
- Epitaxy and wafer processing
- Transfer tools
- Impact on supply chain
- Supply chain scenario
- Discussion
Company presentation 333
Please process my order for “MicroLED Displays” Market and Technology Report

Ref.: YDLS17003

☐ Full Reverse Costing report: EUR 6,490*

☐ Annual Subscription (including this report as the first of the year):
 ○ 3 reports EUR 8 400*
 ○ 5 reports EUR 12 500*
 ○ 7 reports EUR 16 000*
 ○ 10 reports EUR 21 000*
 ○ 15 reports EUR 27 500*

*For price in dollars please use the day’s exchange rate *All reports are delivered electronically in pdf format *For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.systemplus.fr. The present document is valid 6 months after its publishing date: February 2017

SHIP TO
Name (Mr/Ms/Dr/Pr):
..
Job Title:
..
Company:
..
Address:
..
City: State:
..
Postcode/Zip:
..
Country:
..
VAT ID Number for EU members:
...
Tel:
..
Email:
..
Date:
..
Signature:
..

BILLING CONTACT
First Name: ...
Last Name: ...
Email:...
Phone:...

PAYMENT
DELIVERY on receipt of payment:

By credit card:
Number: ___________ ___________ ___________ ___________
Expiration date: ___________ /__ __
Card Verification Value: _____________

By bank transfer:
HSBC - CAE - Le Terminal - 2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

In EUR
Bank code : 30056 - Branch code : 00955 - Account : 09550003234
IBAN: FR76 3005 6009 5509 5500 0323 439

In USD
Bank code : 30056 - Branch code : 00955 - Account : 09550003247
IBAN: FR76 3005 6009 5509 5500 0324 797

Return order by:
FAX: +33 2 53 55 10 59
MAIL: SYSTEM PLUS CONSULTING
21 rue La Noué Bras de Fer
44200 Nantes – France

Contact:
EMAIL: sales@systemplus.fr
TEL: +33 2 40 18 09 16

ABOUT SYSTEM PLUS CONSULTING
System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems.
A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:

TECHNOLOGY ANALYSIS - COSTING SERVICES - COSTING TOOLS - TRAININGS

www.systemplus.fr - sales@systemplus.fr
1. INTRODUCTION
The present terms and conditions apply to the offers, sales and deliveries of services managed by System Plus Consulting except in the case of a particular written agreement.
Buyer must note that placing an order means an agreement without any restriction with these terms and conditions.

2. PRICES
Prices of the purchased services are those which are in force on the date the order is placed. Prices are in Euros and worked out without taxes. Consequently, the taxes and possible added costs agreed when the order is placed will be charged on these initial prices.
System Plus Consulting may change its prices whenever the company thinks it necessary. However, the company commits itself in invoicing at the prices in force on the date the order is placed.

3. REBATES and DISCOUNTS
The quoted prices already include the rebates and discounts that System Plus Consulting could have granted according to the number of orders placed by the Buyer, or other specific conditions. No discount is granted in case of early payment.

4. TERMS OF PAYMENT
System Plus Consulting delivered services are to be paid within 30 days end of month by bank transfer except in the case of a particular written agreement.
If the payment does not reach System Plus Consulting on the deadline, the Buyer has to pay System Plus Consulting a penalty for late payment the amount of which is three times the legal interest rate. The legal interest rate is the current one on the delivery date. This penalty is worked out on the unpaid invoice amount, starting from the invoice deadline. This penalty is sent without previous notice.
When payment terms are over 30 days end of month, the Buyer has to pay a deposit which amount is 10% of the total invoice amount when placing his order.

5. OWNERSHIP
System Plus Consulting remains sole owner of the delivered services until total payment of the invoice.

6. DELIVERIES
The delivery schedule on the purchase order is given for information only and cannot be strictly guaranteed. Consequently any reasonable delay in the delivery of services will not allow the buyer to claim for damages or to cancel the order.

7. ENTRUSTED GOODS SHIPMENT
The transport costs and risks are fully born by the Buyer. Should the customer wish to ensure the goods against lost or damage on the base of their real value, he must imperatively point it out to System Plus Consulting when the shipment takes place. Without any specific requirement, insurance terms for the return of goods will be the carrier current ones (reimbursement based on good weight instead of the real value).

8. FORCE MAJEURE
System Plus Consulting responsibility will not be involved in non execution or late delivery of one of its duties described in the current terms and conditions if these are the result of a force majeure case. Therefore, the force majeure includes all external event unpredictable and irresistible as defined by the article 1148 of the French Code Civil?

9. CONFIDENTIALITY
As a rule, all information handed by customers to system Plus Consulting are considered as strictly confidential. A non-disclosure agreement can be signed on demand.

10. RESPONSABILITY LIMITATION
The Buyer is responsible for the use and interpretations he makes of the reports delivered by System Plus Consulting. Consequently, System Plus Consulting responsibility can in no case be called into question for any direct or indirect damage, financial or otherwise, that may result from the use of the results of our analysis or results obtained using one of our costing tools.

11. APPLICABLE LAW
Any dispute that may arise about the interpretation or execution of the current terms and conditions shall be resolved applying the French law.
It the dispute cannot be settled out-of-court, the competent Court will be the Tribunal de Commerce de Nantes.