NXP SCM-iMX6Q RCP SiP
Fan-Out System in Package from nepes
Packaging report by Stéphane ELISABETH
June 2017
SOMMAIRE

Overview / Introduction 3
 o Executive Summary
 o Reverse Costing Methodology

Company Profile 6
 o NXP
 o IoT Challenges
 o NXP Single Chip Module (SCM) PortFolio
 o RCP SiP Packaging technology
 o Nepes
 o Packaging Roadmap
 o Fan-Out Market

Physical Analysis 18
 o Synthesis of the Physical Analysis
 o SiP Package 20
 ✓ Package Views: Dimensions, marking, Block Diagram, RX views
 ✓ Package Opening: RDL, Line/Space Width
 ✓ Package Cross-Section: RDL, Bumps, Via Frame, Dies
 ✓ Summary if Physical Data
 o APE, PMIC, Flash SPI NOR Dies 52
 ✓ Die View & Dimensions
 ✓ Delayering & main Blocs
 ✓ Die Process
 ✓ Die Cross-Section
 ✓ Die Process Characteristic

Physical Comparison 87
 ✓ Discrete packaging Solution
 ✓ Shinko’s MCeP
 ✓ TSMC’s inFO

Manufacturing Process 93
 o Synthesis of the main parts
 o APE, PMIC, Flash SPI NOR Die Front-End Process & Fabrication Unit
 o RCP SiP Fabrication Unit
 o RCP SiP Packaging Process Flow

Cost Analysis 108
 o Synthesis of the cost analysis
 o Yields Explanation & Hypotheses 112
 o APE, PMIC, Flash SPI NOR dies 113
 ✓ Die Front-End Cost
 ✓ Die Wafer Cost
 ✓ Die Cost
 o RCP SiP Packaging 119
 ✓ Reconstituted Wafer on Glass Carrier Cost
 ✓ RCP SiP Packaging Cost
 ✓ RCP SiP Packaging Cost per steps
 ✓ Packaging Component Cost
 o Component 123
 ✓ Assembled Components Cost
 ✓ SCM-i.MX6Q Component Cost

Estimated Manufactured Price

Company services
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the **NXP SCM-i.MX6 Quad**.

This complete, low power solution will be dedicated to Internet-of-Thing (IoT) in the next few years. The modules include the i.MX6-Quad application processor, MMPF0100 power management system, a 16 MB Flash memory and about 100 SMD component, all in a single package of less than 200 mm3.

The system uses non-conventional packaging developed by Nepes. The components are in Epoxy Molding Compounds (EMC) on few layer of redistribution layers (RDL). To enabling Package-on-Package configuration with Micron’s SDRAM memory chip, a custom redistribution device called Via Frame is integrated in the SiP to allow the memory stacking on the SiP.

Powered by the NXP i.MX6 Quad application processor, the Single Chip Module (SCM), SCM-i.MX6Q is extremely power efficient – ideal to reduce the product time to market by eliminating high-speed memory design and significantly reducing overall design complexity of the CPU/PMIC/Memory subs-system. Thanks to the RCP packaging technology applied to SiP, NXP has realized a very small low-power and high performance complete solution.

This report includes a complete analysis of the SiP, featuring dies analysis, processes, and package cross-section. Finally, it contains a complete cost analysis and a selling price estimation of the system.
RCP SiP Packaging Process Flow

RCP SiP Assembly:
- []
- []
- []

APE Die:
- [] Process:
- [] Placement:

PMIC Die:
- [] Process:
 - [x]
- [] Placement:

Flash Memory Die:
- [] Process:
 - [x]
- [] Placement:
Package View & Dimensions

- **Package:** SCM (Single Chip Module)
- **Dimensions:** 14 x 17 x 0.8 mm
- **Pin Pitch:** 0.65 mm

Top Marking:
- MSCMMX6QZ0K 08AB 04 YYCTFD1617H

Bottom Marking:
- KOREA C07A01
RX Views

Physical Analysis
- Synthesis
- Package
- RX Views
- Package Opening
- Package Cross-Section
- RCP SiP Process
- APE Die
- Flash memory Die
- PMIC Die

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

About System Plus
Package Opening

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis
 o Synthesis
 o Package
 o RX Views
 Package Opening
 o Package Cross-Section
 o RCP SiP Process
 o APE Die
 o Flash memory Die
 o PMIC Die

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

About System Plus

SAMPLE
Package Opening – Bumps & First RDL

- Measured Line/Space Width in Bottom view:
 - RDL
Package Cross-Section – RDL & Bumps

- Copper RDL Thickness:

- Measured Line/Space Width in Cross-Section:
Package Cross-Section – Via Frame

- **Via Frame Dimensions:**
 - **Pitch:**
 - **PCB Thickness:**
 - **Hole Diameter:**
 - **Line/Space width:**
Package Cross-Section – Via Frame

Physical Analysis
- Synthesis
- Package
- RX Views
- Package Opening
 - Package Cross-Section
 - RCP SiP Process
 - APE Die
 - Flash memory Die
 - PMIC Die

Physical Comparison
Manufacturing Process Flow
Cost Analysis
Selling Price Analysis
About System Plus
APE Die Dimensions

Die Overview – Optical View

©2017 by System Plus Consulting

Physical Analysis
- Synthesis
- Package
- RX Views
- Package Opening
- Package Cross-Section
- RCP SiP Process
 - APE Die
 - Flash memory Die
 - PMIC Die

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

About System Plus
PMIC Die Cross-Section – Transistors

PMIC Die Cross-Section – LDMOS Transistor

©2017 by System Plus Consulting
Comparison with Separate Packaging Solution

Exiting Separate package Solutions

<table>
<thead>
<tr>
<th>Product</th>
<th>Packaging Area</th>
<th>Packaging Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>APE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI NOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCP Solution

Several SMT included

<table>
<thead>
<tr>
<th>Product</th>
<th>Packaging Area</th>
<th>Packaging Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

iMX6 – Quad

SPI NOR Memory

PF0100

* Assuming 1 mm spacing between packaging on app board

SAMPLE
Comparison With PoP Solutions – Shinko’s MCeP
Comparison With PoP Solutions – TSMC’s inFO

- TSMC’s inFO min. Line/Space width:
- Nepes’s RCP SiP min. Line/Space width:
Packaging Process Flow (1/6)

- PCB Substrate

Manufacturing Process Flow
- Synthesis
- Front-End Process & Fabrication Unit
 - RCP SiP Process Flow

Cost Analysis

Selling Price Analysis

About System Plus
APE Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw wafer Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APE Front-End Cost

Gross margin

Masks Set Depreciation

APE Front-End Price

APE Front-End Cost Breakdown (Medium Yield)
RCP SiP Packaging Cost

<table>
<thead>
<tr>
<th>Package Manufacturing Cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Carrier Cost</td>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td>Breakdown</td>
<td>Breakdown</td>
<td>Breakdown</td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Manufacturing Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Manufacturing Price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selling Price Analysis

- Synthesis
- Supply Chain
- Yield Hypotheses
- Front-End Cost & Wafer/Die Cost
- RCP SiP Packaging Cost
- Component Cost

About System Plus

©2017 by System Plus Consulting | NXP SCM-i.MX6Q, RCP SiP
Component Cost

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Reconstituted Wafer Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP SIP Manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Wafer Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of potential dies per wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of good dies per wafer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APE Die Price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIC Die Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash SPI NOR Die Price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMD Component Price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Via Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP SIP Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE: Yield losses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Component Cost Breakdown (Medium Yield)

- APE Die Price
- PMIC Die Cost
- Flash SPI NOR Die Price
- SMD Component Price
- Via Frame
- RCP SiP Cost
- Final Test
- BE: Yield losses

Component Cost
Estimated Manufacturer Price

Table: Cost & Price According to Yield Variation

<table>
<thead>
<tr>
<th>Component</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
</tr>
<tr>
<td>NXP Gross Profit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph: SCM iMX6Q Cost & Price According to Yield Variation

Overview / Introduction

- Company Profile & Supply Chain
- Physical Analysis
- Physical Comparison
- Manufacturing Process Flow
- Cost Analysis
- Selling Price Analysis
 - Definition of Prices
 - Manufacturer Financial
 - Manufacturer Price

About System Plus
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

PACKAGING
- SP16277 – Intel Curie SiP
- SP16276 – Qualcomm Snapdragon 820 MCeP vs. Samsung Exynos PoP
- SP16290 – Apple A10 TSMC’s integrated Fan-Out

MARKET AND TECHNOLOGY REPORTS - YOLE SÉVELOPPEMENT

ADVANCED PACKAGING
- Equipment and Materials for Fan-Out Packaging 2017

PATENT ANALYSIS - KNOWMADE

ADVANCED PACKAGING
- Fan-Out Wafer Level Packaging Patent Landscape Analysis
Business Models Fields of Expertise

- Custom Analyses (>130 analyses per year)
- Reports (>40 reports per year)
- Costing Tools
- Trainings

- Display
- LED
- Power
- IC & RF
- MEMS & Sensor
- PCB
- Packaging
- Imaging
- System

Company Profile & Supply Chain
Physical Analysis
Physical Comparison
Manufacturing Process Flow
Cost Analysis
Selling Price Analysis
About System Plus
 - Company services
 - Related reports
 - Feedbacks
 - Contact
 - Legal

©2017 by System Plus Consulting | NXP SCM-i.MX6Q, RCP SiP
Contact

Headquarters
21 rue La Noue Bras de Fer
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix
USA
laferriere@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
onozawa@yole.fr

Mavis WANG
GREATER CHINA
wang@yole.fr

www.systemplus.fr