Table of Contents

Overview / Introduction 4
 o Executive Summary
 o Reverse Costing Methodology

Company Profile 7
 o STMicroelectronics
 o L2G2IS Characteristics

Physical Analysis 13
 o Synthesis of the Physical Analysis
 o Physical Analysis Methodology
 o Package 16
 ✓ Package Views & Dimensions
 ✓ Package Pin Out
 ✓ Package Opening
 ✓ Wire Bonding Process
 ✓ Package Cross-Section
 o ASIC Die 27
 ✓ View, Dimensions & Marking
 ✓ Delayering
 ✓ Main Blocks Identification
 ✓ Cross-Section
 ✓ Process Characteristics
 o MEMS Die 37
 ✓ View, Dimensions & Marking
 ✓ Cap Removed & Cap Details
 ✓ Sensing Areas Details
 ✓ Cross-Section (Sensor, Cap & Sealing)
 ✓ Process Characteristics

Manufacturing Process Flow 57
 o Global Overview
 o ASIC Front-End Process
 o ASIC Wafer Fabrication Unit
 o MEMS Process Flow
 o MEMS Wafer Fabrication Unit
 o Packaging Process Flow
 o Package Assembly Unit

Cost Analysis 76
 o Synthesis of the cost analysis
 o Yields Explanation & Hypotheses
 o ASIC Die 81
 ✓ ASIC Front-End Cost
 ✓ ASIC Back-End 0 : Probe Test & Dicing
 ✓ ASIC Wafer & Die Cost
 o MEMS Die 84
 ✓ MEMS Front-End Cost
 ✓ MEMS Back-End 0 : Probe Test & Dicing
 ✓ MEMS Front-End Cost per process steps
 ✓ MEMS Wafer & Die Cost
 o Component 90
 ✓ Back-End : Packaging Cost
 ✓ Back-End : Packaging Cost per Process Steps
 ✓ Back-End : Final Test Cost
 ✓ L2G2IS Component Cost

Estimated Price Analysis 95

Company services 99
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the STMicroelectronics L2G2IS Gyroscope.

The L2G2IS is a 2-axis gyroscope optimized for optical image stabilization in smartphones and digital still cameras.

With dimensions of 2.3 x 2.3 x 0.65 mm, it can be integrated in compact camera modules. It offers a 50% smaller footprint compared to the previous generation and a 60% smaller volume.

The device is manufactured using the same THELMA process than all STMicroelectronics inertial devices. This THELMA platform requires a two dies approach which became to be very challenging for very thin package integration.

Key technical features of the device include ±100dps / ±200dps full-scale range, 3- and 4-wire SPI interface, and integrated low- and high-pass filters with selectable bandwidth. The L2G2IS operates with a supply voltage range of 1.7V to 3.6V.
The reverse costing analysis is conducted in 3 phases:

Teardown analysis
- Package is analyzed and measured
- The dies are extracted in order to get overall data: dimensions, main blocks, pad number and pin out, die marking
- Setup of the manufacturing process.

Costing analysis
- Setup of the manufacturing environment
- Cost simulation of the process steps

Selling price analysis
- Supply chain analysis
- Analysis of the selling price
Synthesis of the Physical Analysis

Package:
- Number of Pins: 16-pin
- Dimensions: 2.3x2.3x0.7mm
- Type: LGA
- Substrate: FR4 PCB

ASIC:
- Process:
- Electrical Connection:
- Placement in the package:

MEMS:
- Sensing Axis: two axes (Pitch, Roll)
- Process:
 - Cap:
 - Sensor:
- Electrical Connection:
- Placement in the package:
Package View & Dimensions

- **Package:** LGA 16-pin
- **Dimensions:** 2.3 x 2.3 x 0.70mm
- **Pin Pitch:** 0.4mm
- **Marking:** 525 2NWT

Package Top View

Package Bottom View

Package Side View
The die marking includes the logo of STMicroelectronics and:

VA09B
2014
MEMS Marking

The die marking includes the logo of STMicroelectronics and:

CGK19A
2013
MEMS – Sensor Process Flow

- Sensor Wafer Process:
 - Global Overview
 - ASIC Front-End Process
 - MEMS Front-End Process
 - Packaging Process

- Cost Analysis
- Selling Price Analysis
- About System Plus
MEMS – Sensor Process Flow 1/2

- Si wafer
- Si wafer
- Si wafer
- Si wafer
ASIC Front-End Cost

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th></th>
<th>Medium Yield</th>
<th></th>
<th>High Yield</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
</tr>
<tr>
<td>Raw wafer Cost (Si)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASIC Front-End Cost Breakdown (Medium Yield)

The **front-end cost** for the ASIC ranges from [] according to yield variations.

The largest portion of the manufacturing cost is due to the []
MEMS Wafer & Die Cost

MEMS Die Cost Breakdown (Medium Yield)

<table>
<thead>
<tr>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
</tbody>
</table>

Front-End Cost
BE 0: Probe Test Cost
BE 0: Dicing Cost

MEMS Wafer Cost

Nb of potential dies per wafer
Nb of good dies per wafer

Front-End Cost
BE 0: Probe Test
BE 0: Dicing Cost
BE 0: Yield losses

MEMS Die Cost

By adding the probe test cost and the dicing, the **MEMS wafer cost** ranges from [value] according to yield variations.

The number of **good dies per wafer** is estimated to range from [value] according to yield variations, which results in a **die cost** ranging from [value].
Component Cost

The component cost ranges from [minimum] to [maximum] according to yield variations.

- The **ASIC die** represents [percentage] of the component cost.
- The **MEMS die** represents [percentage] of the component cost.
- The **package assembly** represents [percentage] of the component cost.
- **Final test and yield losses** account for [percentage] of the component cost.
Business Models a Fields of Expertise

- Custom Analyses
 (>130 analyses per year)

- Reports
 (>40 reports per year)

- Costing Tools

- Training