Reverse Costing analysis

Nemotek Wafer-Level Camera
Shellcase® MVP Wafer-Level Package
OptiML™ Wafer-Level Optics

April 2012 - Version 1
Written by: Romain FRAUX

DISCLAIMER: System Plus Consulting provides cost studies based on its knowledge of the manufacturing and selling prices of electronic components and systems. The given values are realistic estimates which do not bind System Plus Consulting nor the manufacturers quoted in the report. System Plus Consulting is in no case responsible for the consequences related to the use which is made of the contents of this report. The quoted trademarks are property of their owners.

© 2012 by SYSTEM PLUS CONSULTING, all rights reserved.
Table of Contents

Glossary

1. Overview / Introduction...4
 - Executive Summary
 - Reverse Costing Methodology

2. Companies Profile..6
 - Nemotek Technologie Profile
 - Tessera Profile

3. Physical Analysis...9
 - Synthesis of the Physical Analysis
 - Physical Analysis Methodology
 - Camera Module Views & Dimensions
 - Camera Module X-Ray
 - Camera Module Disassembly
 - CIS Views & Dimensions
 - Camera Module Cross-section
 - Optical Module Cross-section
 ✓ Top FR-4 wafer cross-section
 ✓ Lenses wafer cross-section
 ✓ Spacer FR-4 wafer cross-section
 - Wafer-Level Packaging Cross-section
 ✓ Glass carrier cross-section
 ✓ TSV cross-section
 ✓ Solder bump cross-section
 - Physical Data Summary

4. Manufacturing Process Flow.......................................46
 - Global Overview
 - CIS Wafer-level packaging process flow
 - WL-Optics process flow
 - Description of the wafers fabrication unit

5. Cost Analysis...56
 - Synthesis of the Cost Analysis
 - Main Steps of Economic Analysis
 - Yields Explanation
 - Yields Hypotheses
 - CIS Front-End : Hypotheses
 - CIS WLP Cost
 - CIS WLP Cost per Process Steps
 - CIS WLP : Equipment Cost per Family
 - CIS WLP : Material Cost per Family
 - CIS WLP : Test & Dicing
 - CIS WLP Die Cost
 - WL-Optics : Hypotheses
 - WL-Optics Cost
 - WL-Optics Cost per Process Steps
 - WL-Optics : Equipment Cost per Family
 - WL-Optics : Material Cost per Family
 - WL-Optics : Test & Dicing
 - WL-Optics Die Cost
 - Back-End : Assembly, Housing & Final Test
 - Camera Module Assembly Cost (WLP + WLO + Test)

6. Estimated Price Analysis...85
 - Definition of prices
 - Manufacturer financial ratios
 - Camera module assembly estimated price
Physical Analysis Methodology

- Package is analyzed and measured.
 - X-ray pictures are used to identify the package construction and the redistribution.
- Package is opened in order to identify the elements constituting it.
- Cross-section are realized to get overall package data: dimensions, main characteristics.
- An analysis of the technologies and of the materials used is performed.

![Diagram of package components]

- Foam
- Lens #1
- IR filter
- AP layer
- Lens #2
- Housing
- Adhesive
- Spacer Adhesive
- Imaging Area with micro-lenses
- Cavity
- Bumps
- Glass wafer #2
- FR-4 Spacer
- Glass Wafer #2 (carrier wafer)
- TSV
Camera Module Views & Dimensions

- **Package:** 21-pin WLCSP
- **Dimensions:** 3.7x3.3x2.4mm
- **Min ball pitch:** 0.5mm
- **Ball diameter:** 250µm
Camera Module Cross-Section

Camera module cross-section – SEM view
Wafer-Level Packaging Cross-Section

TSV cross-section – SEM view

© 2012 by SYSTEM PLUS CONSULTING, all rights reserved.

Nemotek wafer-Level Camera – WLP + WL-Optics
The lenses wafer is manufactured with a replication technology. A plastic tool (likely PDMS silicone), molded into a master (likely in steel or glass), is used to imprint the polymer lenses. Each masters can be used to make a large number of PDMS tools and each PDMS tools can be used to imprint a large number of lenses.

Blank Glass wafer 200mm Borosilicate type glass → IR filter layers evaporation coating → Chrome layers sputtering deposition

Specific Mastering preparation

Master Mold

Working Mold replicas

IR filter layers evaporation coating

Chrome layers patterning (litho + etch)

1st Polymer UV replication

Polymer « Drop deposition »

Polymer drop + 2nd UV replication + mask alignment

© 2012 by SYSTEM PLUS CONSULTING, all rights reserved.
• We perform the economic analysis of the CIS WLP and the WL-Optics with the MEMS CoSim+ software.
WL-Optics Die Cost

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>FE : WLO Manufacturing Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE 0 : WLO Test Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE 0 : WLO Dicing Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-Optics Wafer Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Nb of potential dies per wafer | | | |
| Nb of good dies per wafer | | | |

FE : WLO Manufacturing Cost			
BE 0 : WLO Test & Dicing Cost			
BE 0 : Yield losses Cost			
WL-Optics Die Cost			

| BE 0 : WLO Test yield | | | |
| BE 0 : WLO Dicing yield | | | |

- The WLO die cost ranges from [fill in] according to yield variations.
Camera Module Assembly Cost (WLP+WLO+Test)

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>CIS WLP Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS WLP Royalties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-Optics cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-Optics Royalties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS/WLO Assembly & Housing Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final test cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final yield losses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water-Level Camera Cost (without CIS)

- **BE 1**: Assembly & Housing yield
- **BE 1**: Final test yield

Camera Module Cost Breakdown (Medium Yields)

- The camera module cost (without the CIS) ranges from [] according to yield variations.
- The wafer-level packaging (Shellcase® MVP process) represents [] of the module cost.
- The WL-Optics represents [] of the module cost.
- The royalties paid to Tessera represents [] of the module cost.